7.函數(shù)f(x)=log3x+x-2的零點(diǎn)所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 由已知條件分別求出f(1),f(2),f(3),f(4)由此利用零點(diǎn)存在性定理能求出結(jié)果.

解答 解:∵f(x)=log3x+x-2,
∴f(1)=log31+1-2=-1<0,
f(2)=log32+2-2=log32>0,
f(3)=log33+3-2=2,
f(4)=log34+4-2>0,
∴函數(shù)f(x)=log3x+x-2零點(diǎn)所在大致區(qū)間是(1,2).
故選:B.

點(diǎn)評 本題考查函數(shù)的零點(diǎn)所在大致區(qū)間的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)和零點(diǎn)存在性定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)i是虛數(shù)單位,復(fù)數(shù)$\frac{a-i}{1+i}$為純虛數(shù),則實(shí)數(shù)a的值為( 。
A.1B.-1C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,已知圓x2+y2=4上有且僅有四個(gè)點(diǎn)到直線4x-3y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是(-5,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.甲、乙兩人約定在下午1 時(shí)到2 時(shí)之間到某站乘公共汽車,又這段時(shí)間內(nèi)有四班公共汽車它們的開車時(shí)刻分別為 1:15、1:30、1:45、2:00.如果它們約定(1)見車就乘;(2)最多等一輛車.假定甲、乙兩人到達(dá)車站的時(shí)刻是互相不牽連的,且每人在1時(shí)到2 時(shí)的任何時(shí)刻到達(dá)車站是等可能的.求甲、乙同乘一車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(理)從P出發(fā)的三條射線PA,PB,PC每兩條夾角成60°,則二面角B-PA-C的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)(a≤x≤b),集合M={(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=0},則集合M的子集的個(gè)數(shù)為( 。
A.2B.1或0C.1D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不等式x2-logax<0對x∈(0,$\frac{1}{2}$)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.0<a<1B.$\frac{1}{16}$≤a<1C.a>1D.0<a≤$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)a=3,b=5,c=7時(shí),執(zhí)行如圖所示的程序框圖,輸出的m值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點(diǎn)M(0,2),橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{3}$,橢圓E上一點(diǎn)G與橢圓長軸上的兩個(gè)頂點(diǎn)A,B連線的斜率之積等于-$\frac{1}{4}$.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)M的動(dòng)直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的直線方程.

查看答案和解析>>

同步練習(xí)冊答案