6.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,z1=1+2i,i為虛數(shù)單位,則z1z2=(  )
A.1-2iB.-5C.5D.5i

分析 利用復(fù)數(shù)的運(yùn)算法則與共軛復(fù)數(shù)的定義、幾何意義即可求出答案.

解答 解:∵復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,z1=1+2i,
∴z2=-1+2i.
∴z1•z2=(1+2i)(-1+2i)=-5.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則與共軛復(fù)數(shù)的定義、幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)f(x)=ax+1(a>0,a≠1)的圖象向右平移2個單位得到函數(shù)g(x)的圖象,則(  )
A.存在實(shí)數(shù)x0,使得g(x0)=1B.當(dāng)x1<x2時(shí),必有g(shù)(x1)<g(x2
C.g(2)的取值與實(shí)數(shù)a有關(guān)D.函數(shù)g(f(x))的圖象必過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直三棱柱ABC-A1B1C1的所有棱長都為2,點(diǎn)P,Q分別為棱CC1,BC的中點(diǎn),則四面體A1-B1PQ的體積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A、B、C的對邊分別為a,b,c,已知bsin2$\frac{A}{2}$+asin2$\frac{B}{2}$=$\frac{C}{2}$.
(1)若c=2,求△ABC的周長;
(2)若C=$\frac{π}{3}$,△ABC的面積為2$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在多面體ABCA1B1C1中,四邊形ABB1A1是正方形,CA⊥平面ABB1A1,AC=AB=1,B1C1∥BC,BC=2B1C1
(Ⅰ)求異面直線CA1與BC1所成角的正切值;
(Ⅱ)求證:AB1∥平面A1C1C;
(Ⅲ)若點(diǎn)M是AB上的一個動點(diǎn),試確定點(diǎn)M的位置,使得二面角C-A1C1-M的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

一個球體經(jīng)過切割后,剩下部分幾何體的三視圖如右圖所示,則剩下部分幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如下圖,兩點(diǎn)都在河的對岸(不可到達(dá)),為了測量兩點(diǎn)間的距離,選取一條基線,測得:,則()

A. B.

C. D.?dāng)?shù)據(jù)不夠,無法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:選擇題

某加工廠用某原料由車間加工出 產(chǎn)品,由乙車間加工出 產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克 產(chǎn)品,每千克 產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克 產(chǎn)品,每千克 產(chǎn)品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )

A.甲車間加工原料10箱,乙車間加工原料60箱

B.甲車間加工原料15箱,乙車間加工原料55箱

C.甲車間加工原料18箱,乙車間加工原料50箱

D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≤2\\ x≤3\end{array}\right.$,則z=2x+y的最大值為5.

查看答案和解析>>

同步練習(xí)冊答案