17.已知直三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,點(diǎn)P,Q分別為棱CC1,BC的中點(diǎn),則四面體A1-B1PQ的體積為$\frac{\sqrt{3}}{2}$.

分析 以A為原點(diǎn),在平面ABC中過(guò)A作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出四面體A1-B1PQ的體積.

解答 解:以A為原點(diǎn),在平面ABC中過(guò)A作AC的垂線為x軸,AC為y軸,AA1為z軸,
建立空間直角坐標(biāo)系,
A1(0,0,2),B1($\sqrt{3}$,1,2),
Q($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,0),P(0,2,1),
$\overrightarrow{P{B}_{1}}$=($\sqrt{3}$,-1,1),
$\overrightarrow{PQ}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,-1),$\overrightarrow{P{A}_{1}}$=(0,-2,1),
設(shè)平面PQB1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PQ}=\frac{\sqrt{3}}{2}x-\frac{1}{2}y-z=0}\\{\overrightarrow{n}•\overrightarrow{P{B}_{1}}=\sqrt{3}x-y+z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,0),
∴A1平面PQB1的距離d=$\frac{|\overrightarrow{P{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{2}$=$\sqrt{3}$,
|$\overrightarrow{PQ}$|=$\sqrt{\frac{3}{4}+\frac{1}{4}+1}$=$\sqrt{2}$,|$\overrightarrow{P{B}_{1}}$|=$\sqrt{3+1+1}$=$\sqrt{5}$,
cos<$\overrightarrow{PQ},\overrightarrow{P{B}_{1}}$>=$\frac{\overrightarrow{PQ}•\overrightarrow{P{B}_{1}}}{|\overrightarrow{PQ}|•|\overrightarrow{P{B}_{1}}|}$=$\frac{\frac{3}{2}+\frac{1}{2}-1}{\sqrt{2}•\sqrt{5}}$=$\frac{1}{\sqrt{10}}$,
sin<$\overrightarrow{PQ},\overrightarrow{P{B}_{1}}$>=$\sqrt{1-\frac{1}{10}}$=$\frac{3}{\sqrt{10}}$,
∴${S}_{△PQ{B}_{1}}$=$\frac{1}{2}×|\overrightarrow{PQ}|×|\overrightarrow{P{B}_{1}}|×sin<\overrightarrow{PQ},\overrightarrow{P{B}_{1}}>$=$\frac{1}{2}×\sqrt{2}×\sqrt{5}×\frac{3}{\sqrt{10}}$=$\frac{3}{2}$,
∴四面體A1-B1PQ的體積為:
V=$\frac{1}{3}×d×{S}_{△PQ{B}_{1}}$=$\frac{1}{3}×\sqrt{3}×\frac{3}{2}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查幾何體的體積、空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、空間想象能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知O是三角形ABC所在平面內(nèi)一點(diǎn),且滿(mǎn)足$\overrightarrow{BA}$•$\overrightarrow{OA}$+$\overrightarrow{BC}$2=$\overrightarrow{AB}$•$\overrightarrow{OB}$+$\overrightarrow{AC}$2,則點(diǎn)O在( 。
A.AB邊中線所在的直線上B.∠C平分線所在的直線上
C.與AB垂直的直線上D.三角形ABC的外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)l、m是兩條不同的直線,α是一個(gè)平面,則下列說(shuō)法正確的是( 。
A.若l⊥m,m⊆α則l⊥αB.若l∥α,m⊆α則l∥mC.若l⊥α,l∥m則m⊥αD.若l∥α,m∥α則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在如圖所示的正方形中隨機(jī)選擇10000個(gè)點(diǎn),則選點(diǎn)落入陰影部分(邊界曲線C為正態(tài)分布N(-1,1)的密度曲線的一部分)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
附:若X:N(μ,δ2),則P(μ-δ<X≤μ+δ)=0.6826.P(μ-δ<X≤μ+2δ)=0.9544.
A.906B.1359C.2718D.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x+2a|+|x-1|.
(1)若a=1,解不等式f(x)≤5;
(2)當(dāng)a≠0時(shí),$g(a)=f({\frac{1}{a}})$,求滿(mǎn)足g(a)≤4的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若存在實(shí)數(shù)x,使|x-a|+|x-1|≤3成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,1]B.[-2,2]C.[-2,3]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=sinωx+cosωx(ω>0)的圖象相鄰的兩條對(duì)稱(chēng)軸的距離為$\frac{π}{3}$,則ω的值為( 。
A.$\frac{1}{3}$B.$\frac{3}{π}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱(chēng),z1=1+2i,i為虛數(shù)單位,則z1z2=( 。
A.1-2iB.-5C.5D.5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)f(x)=2x2-lnx的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案