【題目】如圖,在五邊形中,,,為的中點(diǎn),.現(xiàn)把此五邊形沿折成一個(gè)的二面角.
(1)求證:直線平面;
(2)求二面角的平面角的余弦值
【答案】(1)證明見解析;(2) .
【解析】
(1)證明四邊形為平行四邊形得到,得到證明.
(2) 取的中點(diǎn),連接,,證明為二面角的平面角和為二面角的平面角,在中,利用邊角關(guān)系計(jì)算得到答案.
(1)證明:因?yàn)椋?/span>,,所以.
又因?yàn)?/span>,所以四邊形為平行四邊形.所以.
又平面,所以平面.
(2)解:如圖,取的中點(diǎn),連接,,在△中,作,
垂足為,在平面中,作,垂足為,連接.
因?yàn)?/span>,.所以,.
又,.故平面.所以平面.
所以為二面角的平面角,即.
又,所以平面.所以.
又,所以平面.所以.
所以為二面角的平面角.
設(shè),則.
在中,,..所以.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長(zhǎng)為7 cm,腰長(zhǎng)為2cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從B點(diǎn)開始由左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BF=x(0≤x≤7),左邊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,畫出程序框圖,并寫出程序.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別是通過某城市開發(fā)區(qū)中心O的兩條東西和南北走向的街道,連接M,N兩地間的鐵路是圓心在上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且,點(diǎn)N到,的距離分別為5km和4km.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路路線所在圓弧的方程.
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路上任意一點(diǎn)到校址的距離不能小于km,求該校址距點(diǎn)O的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量單位:萬只與相應(yīng)年份序號(hào)的數(shù)據(jù)表和散點(diǎn)圖如圖所示,根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)單位:個(gè)關(guān)于x的回歸方程.
年份序號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬只 |
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程參考統(tǒng)計(jì)量:,;
試估計(jì):該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(l)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線與交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系,
(1)求曲線C的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線l的極坐標(biāo)方程為,求曲線C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,.
(Ⅰ)若點(diǎn)為,求直線的方程;
(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線,的斜率分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場(chǎng)價(jià)格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合 .對(duì)于,定義與之間的距離為.
(Ⅰ),寫出所有的;
(Ⅱ)任取固定的元素,計(jì)算集合中元素個(gè)數(shù);
(Ⅲ)設(shè),中有個(gè)元素,記中所有不同元素間的距離的最小值為.證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com