【題目】在平面直角坐標系中,橢圓 的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線的斜率為時,.

(1)求橢圓的方程;

(2)求由,,四點構成的四邊形面積的取值范圍.

【答案】(1) ;(2) .

【解析】

(1)由題意可得,.則橢圓的方程為.

(2)分類討論:①當兩條弦中一條斜率為時,另一條弦的斜率不存在,②當兩弦斜率均存在且不為時,設,聯(lián)立直線方程與橢圓方程,結合弦長公式可得 . ,結合均值不等式的結論可得據(jù)此可知.

(1)由題意知,則,,

.

所以.所以橢圓的方程為.

(2)①當兩條弦中一條斜率為時,另一條弦的斜率不存在,

由題意知;

②當兩弦斜率均存在且不為時,設,

且設直線的方程為

則直線的方程為.

將直線的方程代入橢圓方程中,并整理得

,

所以

同理 .

所以 ,

,當且僅當時取等號.

,綜合①與②可知,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明函數(shù)在區(qū)間上為增函數(shù);

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,∠ACB90°,ACBC2D,E分別為棱AB,BC的中點,M為棱AA1的中點.

1)證明:A1B1C1D;

2)若AA14,求三棱錐AMDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)兩點

1)求的中垂線方程;

2)求過點且與直線平行的直線的方程;

3)一束光線從點射向(2)中的直線,若反射光線過點,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于的方程,給出下列四個命題

存在實數(shù),使得方程恰有2個不同的實根;

存在實數(shù),使得方程恰有4個不同的實根;

存在實數(shù),使得方程恰有5個不同的實根;

存在實數(shù),使得方程恰有7個不同的實根

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選用適當?shù)姆柼羁眨?/span>

1)若集合,則-4__________B-3______A, A ___________B,B_________________A;

2)若集合,則1__________A_______________A,_________A;

(3){是菱形}_____________{是平行四邊形};{是等腰三角形}_____________{是等邊三角形}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù);

(1)求實數(shù)的值.

(2)試判斷函數(shù)的單調(diào)性的定義證明;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊長為,,交于點.將菱形沿對角線折起,得到三棱錐,點是棱的中點,

(I)求證:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求yfx)的最大值和最小值,并寫出相應的x值;

2)將函數(shù)yfx)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)ygx)的圖象,區(qū)間[a,b]a,bRab)滿足:ygx)在[a,b]上至少含有20個零點,在所有滿足上述條件的[a,b]中,求ba的最小值.

查看答案和解析>>

同步練習冊答案