【題目】已知平面內(nèi)兩點(diǎn).
(1)求的中垂線方程;
(2)求過點(diǎn)且與直線平行的直線的方程;
(3)一束光線從點(diǎn)射向(2)中的直線,若反射光線過點(diǎn),求反射光線所在的直線方程.
【答案】(1);(2);(3).
【解析】
(1)先求的中點(diǎn)坐標(biāo)為,利用兩直線垂直,則,再利用點(diǎn)斜式寫出直線方程即可;(2)利用兩直線平行,則,再利用點(diǎn)斜式寫出直線方程即可;(3)先利用點(diǎn)關(guān)于直線的對稱點(diǎn)求關(guān)于直線的對稱點(diǎn),的中點(diǎn)在直線上,,則斜率乘積為 1,聯(lián)立方程可解,,再利用點(diǎn)斜式寫出直線方程即可.
(1),,∴的中點(diǎn)坐標(biāo)為,
,∴的中垂線斜率為,
∴由點(diǎn)斜式可得,
∴的中垂線方程為;
(2)由點(diǎn)斜式,
∴直線的方程,
(3)設(shè)關(guān)于直線的對稱點(diǎn),
∴,
解得,
∴,,
由點(diǎn)斜式可得,整理得
∴反射光線所在的直線方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)若且關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若展開式中前三項(xiàng)系數(shù)成等差數(shù)列,求:
(1)展開式中含x的一次冪的項(xiàng);
(2)展開式中所有x 的有理項(xiàng);
(3)展開式中系數(shù)最大的項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)設(shè) ,,若 是的必要不充分條件,求實(shí)數(shù)的取值范圍
(Ⅱ)已知命題方程表示焦點(diǎn)在軸上的橢圓;命題:雙曲線的離心率.若 有且只有一個(gè)為真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓 的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦與.當(dāng)直線的斜率為時(shí),.
(1)求橢圓的方程;
(2)求由,,,四點(diǎn)構(gòu)成的四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域是且,,當(dāng)時(shí),.
(1)求證:是奇函數(shù);
(2)求在區(qū)間上的解析式;
(3)是否存在正整數(shù),使得當(dāng)時(shí),不等式有解?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com