11.已知集合M={x|1<x≤3},若N={x|2<x≤5},則M∪N=( 。
A.{x|1<x≤5}B.{x|2<x≤3}C.{x|1≤x<2或3≤x≤5}}D.{x|1≤x≤5}

分析 根據(jù)并集的定義寫出M∪N即可.

解答 解:集合M={x|1<x≤3},N={x|2<x≤5},
則M∪N={x|1<x≤5}.
故選:A.

點評 本題考查了并集的定義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和為Sn,a1=-9,a2為整數(shù),且對任意n∈N*都有Sn≥S5
(1)求{an}的通項公式;
(2)設(shè)${b_1}=\frac{4}{3}$,${b_{n+1}}=\left\{\begin{array}{l}{a_n},\;\;\;\;\;\;\;\;\;\;\;\;\;n為奇數(shù)\\-{b_n}+{(-2)^n},n為偶數(shù)\;\end{array}\right.$(n∈N*),求{bn}的前n項和Tn;
(3)在(2)的條件下,若數(shù)列{cn}滿足${c_n}={b_{2n}}+{b_{2n+1}}+λ{(lán)(-1)^n}{(\frac{1}{2})^{{a_n}+5}}\;(n∈{N^*})$.是否存在實數(shù)λ,使得數(shù)列{cn}是單調(diào)遞增數(shù)列.若存在,求出λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在棱長為2的正四面體A-BCD中,E、F分別為直線AB、CD上的動點,且$|{EF}|=\sqrt{3}$.若記EF中點P的軌跡為L,則|L|等于$\frac{π}{4}$.(注:|L|表示L的測度,在本題,L為曲線、平面圖形、空間幾何體時,|L|分別對應(yīng)長度、面積、體積.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)隨機(jī)變量X~N(2,1),則P(|X|<1)=( 。
附:(若隨機(jī)變量ξ~N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且n+1=1+Sn對一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時,數(shù)列{an}是等比數(shù)列,并求出它的通項公式;
(2)在(1)的條件下,當(dāng)n為何值時,數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$的前n項和Tn取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex[x2-(a+2)x+b],曲線y=f(x)在x=0處的切線方程為2a2x+y-b=0,其中e是自然對數(shù)的底數(shù)).
(Ⅰ)確定a,b的關(guān)系式(用a表示b);
(Ⅱ)對于任意負(fù)數(shù)a,總存在x>0,使f(x)<M成立,求實數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,直線x=a與雙曲線M漸近線交于點P,若sin∠PF1F2=$\frac{1}{3}$,則該雙曲線的離心率為$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,曲線C由左半橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,x≤0)和圓N:(x-2)2+y2=5在y軸右側(cè)的部分連接而成,A,B是M與N的公共點,點P,Q(均異于點A,B)分別是M,N上的動點.
(1)若|PQ|的最大值為4+$\sqrt{5}$,求半橢圓M的方程;
(2)若直線PQ過點A,且$\overrightarrow{AQ}$=-2$\overrightarrow{AP}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半橢圓M的離心率.

查看答案和解析>>

同步練習(xí)冊答案