分析 (1)由已知數(shù)列遞推式可得an+1=2an,再由數(shù)列{an}是等比數(shù)列求得首項(xiàng),并求出數(shù)列通項(xiàng)公式;
(2)把數(shù)列{an}的通項(xiàng)公式代入數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$,可得數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$是遞減數(shù)列,可知當(dāng)n=9時(shí),數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$的項(xiàng)為正數(shù),n=10時(shí),數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$的項(xiàng)為負(fù)數(shù),則答案可求.
解答 解:(1)由an+1=1+Sn得:當(dāng)n≥2時(shí),an=1+Sn-1,
兩式相減得:an+1=2an,
∵數(shù)列{an}是等比數(shù)列,∴a2=2a1,
又∵a2=1+S1=1+a1,解得:a1=1.
得:${a_n}={2^{n-1}}$;
(2)$lg\frac{400}{{a}_{n}}=lg\frac{400}{{2}^{n-1}}$,可知數(shù)列$\{lg\frac{400}{{{2^{n-1}}}}\}$是一個(gè)遞減數(shù)列,
∴$lg\frac{400}{2^0}>lg\frac{400}{2^1}>lg\frac{400}{2^2}>…>lg\frac{400}{2^8}>0>lg\frac{400}{2^9}>…$,
由此可知當(dāng)n=9時(shí),數(shù)列$\left\{{lg\frac{400}{a_n}}\right\}$的前項(xiàng)和Tn取最大值.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列通項(xiàng)公式的求法,考查數(shù)列的函數(shù)特性,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{π}{6},\frac{5π}{12}}]$ | B. | $[{\frac{5π}{12},π}]$ | C. | $[{\frac{π}{4},π}]$ | D. | $[{\frac{π}{4},\frac{2π}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 36 | C. | 42 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1<x≤5} | B. | {x|2<x≤3} | C. | {x|1≤x<2或3≤x≤5}} | D. | {x|1≤x≤5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | -2 | D. | -$\frac{5}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com