5.(1-$\sqrt{x}$)5(1+$\sqrt{x}$)6展開式中x${\;}^{\frac{3}{2}}$的系數(shù)為-5.

分析 利用二項式定理展開即可得出.

解答 解:(1-$\sqrt{x}$)5=1-${∁}_{5}^{1}{x}^{\frac{1}{2}}$+${∁}_{5}^{2}x$-${∁}_{5}^{3}{x}^{\frac{3}{2}}$+…,
(1+$\sqrt{x}$)6=1+${∁}_{6}^{1}{x}^{\frac{1}{2}}$+${∁}_{6}^{2}x$+${∁}_{6}^{3}$${x}^{\frac{3}{2}}$+…,
∴(1-$\sqrt{x}$)5(1+$\sqrt{x}$)6展開式中x${\;}^{\frac{3}{2}}$的系數(shù)=${∁}_{6}^{3}$-${∁}_{5}^{1}{∁}_{6}^{2}$+${∁}_{5}^{2}{∁}_{6}^{1}$-${∁}_{5}^{3}$=-5.
故答案為:-5.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.tan330°的值為( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求函數(shù)f(x)=$\sqrt{4-2x}$+(x-1)0+$\frac{1}{x+1}$的定義域;(要求用區(qū)間表示)
(2)若函數(shù)f(x+1)=x2-2x,求f(3)的值和f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=1+cos2x+$\sqrt{3}$sin2x
(1)若函數(shù)f(x)=1-$\sqrt{3}$,且x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求x;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間,并在給出的坐標(biāo)系中畫出y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足z=$\frac{1+i}{i}$,則|z|=( 。
A.1B.$\frac{1}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sinx-cosx,則把函數(shù)f(x)的圖象上每個點的橫坐標(biāo)擴大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)(x)的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{11π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過三點A(3,2),B(4,5),C(1,6)的圓,則圓的面積為( 。
A.10πB.C.$\frac{5}{2}$πD.$\frac{5}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過兩點M(-1,2),N(3,4)的直線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在二項式(x2-$\frac{1}{x}$)5的展開式中,記x4的系數(shù)為a,則${∫}_{0}^{\frac{a}{10}}$$\sqrt{1-{x}^{2}}$dx=( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

同步練習(xí)冊答案