【題目】在平面直角坐標系中,已知直線的方程為,.

1)若直線軸、軸上的截距之和為-1,求坐標原點到直線的距離;

2)若直線與直線分別相交于、兩點,點、兩點的距離相等,求的值.

【答案】(1)(2)

【解析】

(1)根據(jù)直線軸、軸上的截距之和為-1,列等式可得,從而可得直線的方程,再用點到直線的距離公式可得答案;

(2)先判斷得點為線段的中點,設(shè)出,根據(jù)中點公式求出,將其代入直線可解得的坐標,再將的坐標代入的方程可解得.

1)解法一:令得橫截距

,得橫截距

則有,解得,

此時,直線的方程為,即.

坐標原點到直線的距離.

2)∵點在直線上,且點、距離相等,

∴點為線段的中點,

如圖所示:

設(shè)直線的交點為,則直線的交點.

解得.

.

又∵點在直線上,

解得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,坐標原點為,點,兩點分別在軸和軸上運動,并且滿足,動點的軌跡為曲線.

(1)求動點的軌跡方程;

(2)作曲線的任意一條切線(不含軸),直線與切線相交于點,直線與切線、軸分別相交于點與點,試探究的值是否為定值,若為定值請求出該定值;若不為定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點(1,2)是函數(shù)的圖象上一點,數(shù)列的前項和是.

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)橢圓的下頂點為,右焦點為,離心率為.已知點是橢圓上一點,當直線經(jīng)過點時,原點到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與圓:相交于點(異于點),設(shè)點關(guān)于原點的對稱點為,直線與橢圓相交于點(異于點).①若,求的面積;②設(shè)直線的斜率為,直線的斜率為,求證:是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, 邊的中點,將沿折起,使平面平面,連接得到如圖所示的幾何體.

(1)求證; 平面

(2)若二面角的平面角的正切值為求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點,斜率為1的直線與拋物線交于點,,且.

(1)求拋物線的方程;

(2)過點作直線交拋物線于不同于的兩點、,若直線分別交直線兩點,求取最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為,其中為底面的中心,,分別為,的中點,平面與底面交于直線.

1)求證:.

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中心在原點,對稱軸為坐標軸的雙曲線與圓有公共點,且圓在點處的切線與雙曲線的一條漸近線平行,則該雙曲線的實軸長為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點,使得直線平面若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案