分析 數(shù)列{an}滿足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*).可得:an+1-an=(an-1)2>0,可得:數(shù)列{an}單調遞增.可得a2=$\frac{13}{9}$,a3=$\frac{133}{81}$,a4=$\frac{13477}{6561}$,$\frac{1}{{a}_{3}-1}$=$\frac{81}{52}$>1,$\frac{1}{{a}_{4}-1}$=$\frac{6561}{6916}$<1.另一方面:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,可得Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$…+$\frac{1}{{a}_{n}}$=($\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2}-1}$)+($\frac{1}{{a}_{2}-1}$-$\frac{1}{{a}_{3}-1}$)+…+($\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$)=3-$\frac{1}{{a}_{n+1}-1}$,對n=1,2,3,n≥4,分類討論即可得出.
解答 解:∵數(shù)列{an}滿足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*).
可得:an+1-an=(an-1)2>0,∴an+1>an,因此數(shù)列{an}單調遞增.
則a2-1=$\frac{4}{3}$,可得a2=$\frac{13}{9}$,同理可得:a3=$\frac{133}{81}$,a4=$\frac{13477}{6561}$.$\frac{1}{{a}_{3}-1}$=$\frac{81}{52}$>1,
$\frac{1}{{a}_{4}-1}$=$\frac{6561}{6916}$<1,
另一方面:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,
∴Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$…+$\frac{1}{{a}_{n}}$=($\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{2}-1}$)+($\frac{1}{{a}_{2}-1}$-$\frac{1}{{a}_{3}-1}$)+…+($\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$)
=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$=3-$\frac{1}{{a}_{n+1}-1}$,
當n=1時,S1=$\frac{1}{{a}_{1}}$=$\frac{3}{4}$,其整數(shù)部分為0;
當n=2時,S2=$\frac{3}{4}$+$\frac{9}{13}$=1+$\frac{23}{52}$,其整數(shù)部分為1;
當n=3時,S3=$\frac{3}{4}$+$\frac{9}{13}$+$\frac{81}{133}$=2+$\frac{355}{6561}$,其整數(shù)部分為2;
當n≥4時,Sn=2+1-$\frac{1}{{a}_{n+1}-1}$∈(2,3),其整數(shù)部分為2.
綜上可得:Sn的整數(shù)部分的所有可能值構成的集合是{0,1,2}.
故答案為:{0,1,2}.
點評 本題考查了數(shù)列的單調性、遞推關系、“裂項求和”方法,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源:2015-2016學年江西省南昌市高二文下學期期末考試數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
(1)判斷的奇偶性;
(2)若,函數(shù)在區(qū)間上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(5)<f(2)<f(-1) | B. | f(2)<f(5)<f(-1) | C. | f(-1)<f(2)<f(5) | D. | f(2)<f(-1)<f(5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-2\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+1 | B. | $y={log_{\frac{1}{2}}}x$ | C. | y=2x | D. | y=-(x-1)2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com