2.(2x3-$\frac{1}{x}$)8的展開式中常數(shù)項(xiàng)是112.(用數(shù)字表示)

分析 利用二項(xiàng)展開式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0得常數(shù)項(xiàng).

解答 解:(2x3-$\frac{1}{x}$)8的展開式的通項(xiàng)為:Tr+1=C8r(2x38-r(-$\frac{1}{x}$)r=28-r(-1)rC8rx24-4r,
令24-4r=0,解得r=6,
則(2x3-$\frac{1}{x}$)8的展開式中常數(shù)項(xiàng)是28-6(-1)6C86=112,
故答案為:112.

點(diǎn)評(píng) 本題考查二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問(wèn)題的工具.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)y=f(x)在R上為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣2x,則當(dāng)x<0時(shí),f(x)的解析式是( )

A.f(x)=﹣x(x+2) B.f(x)=x(x﹣2)

C.f(x)=﹣x(x﹣2) D.f(x)=x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)f(x)=loga(x3-2x)(a>0且a≠1)在區(qū)間(-$\sqrt{2}$,-1)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞減區(qū)間為( 。
A.(-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是{0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:函數(shù)f(x)=2x2-2(m-2)x+3m-1在(1,2)單調(diào)遞增
命題q:方程$\frac{x^2}{m+1}+\frac{y^2}{9-m}=1$表示焦點(diǎn)在y軸上的橢圓
若p或q為真,p且q為假,¬p為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)是定義在R上的函數(shù),圖象關(guān)于y軸對(duì)稱,且在x∈[0,+∞)單調(diào)遞增.f(-2)=1,那么f(x)≤1的
解集是(  )
A.[-2,2]B.(-1,2)C.[-1,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.由下列各組命題構(gòu)成的新命題“p且q”為真命題的是( 。
A.p:4+4=9,q:7>4B.p:a∈{a,b,c},q:{a}⊆{a,b,c}
C.p:15是質(zhì)數(shù),q:8是12的約數(shù)D.p:2是偶數(shù),q:2不是質(zhì)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知命題$p:\frac{1}{a}>\frac{1}{4}$,命題q:?x∈R,ax2+ax+1>0,則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè){an}是公差不為零的等差數(shù)列,滿足a6=5,a22+a32=a42+a52,數(shù)列{bn}的通項(xiàng)公式為bn=3n-11
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an},{bn+4}中按從小到大的順序取出相同的項(xiàng)構(gòu)成數(shù)列{Cn},直接寫出數(shù)列{Cn}的通項(xiàng)公式;
(3)記dn=$\frac{b_n}{a_n}$,是否存在正整數(shù)m,n(m≠n≠5),使得d5,dm,dn成等差數(shù)列?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案