分析 利用二項(xiàng)展開式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0得常數(shù)項(xiàng).
解答 解:(2x3-$\frac{1}{x}$)8的展開式的通項(xiàng)為:Tr+1=C8r(2x3)8-r(-$\frac{1}{x}$)r=28-r(-1)rC8rx24-4r,
令24-4r=0,解得r=6,
則(2x3-$\frac{1}{x}$)8的展開式中常數(shù)項(xiàng)是28-6(-1)6C86=112,
故答案為:112.
點(diǎn)評(píng) 本題考查二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問(wèn)題的工具.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)y=f(x)在R上為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣2x,則當(dāng)x<0時(shí),f(x)的解析式是( )
A.f(x)=﹣x(x+2) B.f(x)=x(x﹣2)
C.f(x)=﹣x(x﹣2) D.f(x)=x(x+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞) | B. | (-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞) | C. | (-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞) | D. | (-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | (-1,2) | C. | [-1,2] | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p:4+4=9,q:7>4 | B. | p:a∈{a,b,c},q:{a}⊆{a,b,c} | ||
C. | p:15是質(zhì)數(shù),q:8是12的約數(shù) | D. | p:2是偶數(shù),q:2不是質(zhì)數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com