【題目】下列說法正確的是( 。
A. 某人打靶,射擊10次,擊中7次,那么此人中靶的概率為0.7
B. 一位同學(xué)做擲硬幣試驗(yàn),擲6次,一定有3次“正面朝上”
C. 某地發(fā)行福利彩票,回報(bào)率為,有人花了100元錢買彩票,一定會(huì)有47元的回報(bào)
D. 概率等于1的事件不一定為必然事件
【答案】D
【解析】
對(duì)四個(gè)命題分別進(jìn)行判斷即可得出結(jié)論
,某人打靶,射擊次,擊中次,那么此人中靶的概率為,是一個(gè)隨機(jī)事件,故錯(cuò)誤
,是一個(gè)隨機(jī)事件,一位同學(xué)做擲硬幣試驗(yàn),擲次,不一定有次“正面朝上”,故錯(cuò)誤
,是一個(gè)隨機(jī)事件,買這種彩票,中獎(jiǎng)或者不中獎(jiǎng)都有可能,但事先無法預(yù)料,故錯(cuò)誤
,正確,比如說在和之間隨機(jī)取一個(gè)實(shí)數(shù),這個(gè)數(shù)不等于的概率是,但不是必然事件,故正確
綜上所述,故選
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+2-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,點(diǎn),過點(diǎn)M且垂直于CM的直線交圓C于A,B兩點(diǎn),過A,B兩點(diǎn)分別作圓C的切線,兩切線相交于點(diǎn)P,則過點(diǎn)P且平行于AB的直線方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對(duì)自行車運(yùn)動(dòng)員甲、乙兩人在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計(jì)甲、乙兩運(yùn)動(dòng)員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)棱底面,且側(cè)棱的長是,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點(diǎn)分別為、,過點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:.
(1)若直線過定點(diǎn),且與圓C相切,求方程;
(2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com