9.在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥面ABCD.
(1)求證:PC⊥BD;
(2)過直線BD且垂直于直線PC的平面交PC于點E,且三棱錐E-BCD的體積取到最大值,
①求此時PA的長度;
②求此時二面角A-DE-B的余弦值的大。

分析 (1)連接AC,推導(dǎo)出BD⊥AC,BD⊥PA,由此能證明BD⊥PC.
(2)①設(shè)PA=h,推導(dǎo)出E(λ,λ,h-hλ),PC⊥BE,設(shè)E(x,y,z),由$\overrightarrow{PC}•\overrightarrow{BE}$=0,得$λ=\frac{{{h^2}+1}}{{{h^2}+2}}$,由此能求出體積取到最大值時,PA的長度.
②以A為坐標(biāo)原點,AB、AD、AP所在直線為軸建系,利用向量法能求出二面角A-DE-B的余弦值.

解答 證明:(1)連接AC,
∵在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥面ABCD,
∴BD⊥AC,BD⊥PA,∴BD⊥平面PAC,
∴BD⊥PC…(4分)
(2)①設(shè)PA=h,∵E在PC上,∴設(shè)$\overrightarrow{PE}=λ\overrightarrow{PC}$,代入,得E(λ,λ,h-hλ),…(5分)
∵PC⊥面BDE,∴PC⊥BE,
設(shè)E(x,y,z),則$\overrightarrow{PC}•\overrightarrow{BE}$=0,
代入,得$λ=\frac{{{h^2}+1}}{{{h^2}+2}}$,…(6分)
∴${V_{E-BCD}}=\frac{1}{3}{S_{△BCD}}•{z_E}=\frac{1}{6}•\frac{h}{{{h^2}+2}}=\frac{1}{6}•\frac{1}{{h+\frac{2}{h}}}$…(7分)
所以體積取到最大值時,$PA=h=\sqrt{2}$…(8分)
②以A為坐標(biāo)原點,AB、AD、AP所在直線為軸建系,
則A(0,0,0),D(0,1,0),B(1,0,0),E($\frac{3}{4},\frac{3}{4},\frac{{\sqrt{2}}}{4}$),…(9分)
$\overrightarrow{AD}$=(0,1,0),$\overrightarrow{AE}$=($\frac{3}{4},\frac{3}{4},\frac{\sqrt{2}}{4}$),$\overrightarrow{BD}$=(-1,1,0),$\overrightarrow{BE}$=(-$\frac{1}{4}$,$\frac{3}{4},\frac{\sqrt{2}}{4}$),
設(shè)面ADE的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=y=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{3}{4}x+\frac{3}{4}y+\frac{\sqrt{2}}{4}z=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2},0,-3$),
設(shè)面BDE的法向量為$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=-a+b=0}\\{\overrightarrow{m}•\overrightarrow{BE}=-\frac{1}{4}a+\frac{3}{4}y+\frac{\sqrt{2}}{4}z=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,-$\sqrt{2}$),…(11分)
∴$cos<\vec m,\vec n>=\frac{\vec m•\vec n}{|\vec m|•|\vec n|}=\frac{{2\sqrt{22}}}{11}$,
∴二面角A-DE-B的余弦值為$\frac{2\sqrt{22}}{11}$.…(12分)

點評 本題考查異面直線垂直的證明,考查體積最大時線段長的求法,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,則z=2x+y-$\frac{1}{2}$的最大值是( 。
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)當(dāng)a=1時,討論f(x)的單調(diào)性;
(2)當(dāng)a>0時,設(shè)f(x)在x=x0處取得最小值,求證:f(x0)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E為PC的中點.
(I)求證:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐B-ADEF中,平面ABD⊥平面ADEF,其中AB⊥AD,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(1)若C是線段DF的中點,求證:DF⊥平面ABC;
(2)若二面角A-BF-D的平面角的余弦值為$\frac{1}{3}$,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=90°,AB⊥側(cè)面BB1C1C,E為CC1的中點
(1)求證:EA⊥EB1
(2)求二面角A-EB1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,BE=$\frac{1}{2}$EC,AD=2DC,AE=$\sqrt{2}$.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,邊長為4的正方形ABED的對邊AB、ED的中點為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于( 。
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的側(cè)面積為(  )
A.(200+100$\sqrt{3}$)cm2B.(200+100π)cm2C.(200+50$\sqrt{5}$π)cm2D.(300+50π)cm2

查看答案和解析>>

同步練習(xí)冊答案