10.已知等比數(shù)列{an}的公比為正數(shù),前n項和為Sn,a1+a2=2,a3+a4=6,則S8等于(  )
A.$81-27\sqrt{3}$B.54C.38-1D.80

分析 利用等比數(shù)列的前n項和的性質(zhì)即可得出.

解答 解:因為{an}為等比數(shù)列,a1+a2=2,a3+a4=6,
則a5+a6=18,a7+a8=54,S8=a1+a2+a3+a4+a5+a6+a7+a8=2+6+18+54=80.
故選:D.

點評 本題考查了等比數(shù)列的通項公式與前n項和的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知兩個不同直線a,b,兩不同平面α,β,下列結(jié)論正確的是(  )
A.若a∥b,a∥α,則b∥αB.若a⊥b,a⊥α,則b⊥α
C.若a∥α,a∥β,α∩β=b,則a∥bD.若a∥α,α⊥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)Sn為數(shù)列{an}的前n項和,若2an+(-1)n•an=2n+(-1)n•2n(n∈N*),則S10=$\frac{2728}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.y=cos(x+1)圖象上相鄰的最高點和最低點之間的距離是( 。
A.$\sqrt{{π^2}+4}$B.πC.2D.$\sqrt{{π^2}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項公式;
(2)記${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,設(shè){bn}的前n項和為Sn.求最小的正整數(shù)n,使得${S_n}>\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)l,m,n表示不同的直線,α,β,γ表示不同的平面,給出下列四個命題:
①若m∥l,且m⊥α,則l⊥α;
②若m∥l,且m∥α,則l∥α;
③若α⊥β,γ⊥β,則α∥γ;
④若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n.
錯誤命題的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}sin({x+α}),({x≤0})\\ cos({x-β}),({x>0})\end{array}$是偶函數(shù),則下列結(jié)論可能成立的是( 。
A.$α=\frac{π}{4},β=\frac{π}{8}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(Ⅰ)證明:SD⊥平面SAB;
(Ⅱ)求四棱錐S-ABCD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩個單位向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,則|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊答案