16.已知兩個不同直線a,b,兩不同平面α,β,下列結(jié)論正確的是( 。
A.若a∥b,a∥α,則b∥αB.若a⊥b,a⊥α,則b⊥α
C.若a∥α,a∥β,α∩β=b,則a∥bD.若a∥α,α⊥β,則a⊥β

分析 在A中,b∥α或b?α;在B中,b∥α或b?α;在C中,由直線與平面平行的性質(zhì)定理得a∥b;在D中,a與β相交、平行或a?β.

解答 解:由兩個不同直線a,b,兩不同平面α,β,知:
在A中,若a∥b,a∥α,則b∥α或b?α,故A錯誤;
在B中,若a⊥b,a⊥α,則b∥α或b?α,故B錯誤;
在C中,若a∥α,a∥β,α∩β=b,則由直線與平面平行的性質(zhì)定理得a∥b,故C正確;
在D中,若a∥α,α⊥β,則a與β相交、平行或a?β,故D錯誤.
故選:C.

點評 本題考查命題的真假判斷與應用,著重考查直線與平面間的位置關系,考查線面平行的性質(zhì)定理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.拋物線x=ay2(a≠0)的焦點坐標是$({\frac{1}{4a},0})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=10,an-10≤an+1≤an+10(n∈N*).
(1)若{an}是等差數(shù)列,Sn=a1+a2+…+an,且Sn-10≤Sn+1≤Sn+10(n∈N*),求公差d的取值集合;
(2)若a1,a2,…,ak成的比數(shù)列,公比q是大于1的整數(shù),且a1+a2+…+ak>2017,求正整數(shù)k的最小值;
(3)若a1,a2,…,ak成等差數(shù)列,且a1+a2+…+ak=100,求正整數(shù)k的最小值及k取最小值時公差d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.定義點P(x0,y0)到直線l:Ax+By+C=0(A2+B2≠0)的有向距離為d=$\frac{{A{x_0}+B{y_0}+C}}{{\sqrt{{A^2}+{B^2}}}}$.已知點P1,P2到直線l的有向距離分別是d1,d2,給出以下命題:
①若d1=d2,則直線P1P2與直線l平行;
②若d1=-d2,則直線P1P2與直線l垂直;
③若d1•d2>0,則直線P1P2與直線l平行或相交;
④若d1•d2<0,則直線P1P2與直線l相交,
其中所有正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形邊長為1,粗實線畫出的是一個幾何體的三視圖,則該幾何體體積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某校收集該校學生從家到學校的時間后,制作成如下的頻率分布直方圖:
(1)求a的值及該校學生從家到校的平均時間;
(2)若該校因?qū)W生寢室不足,只能容納全校50%的學生住校,出于安全角度考慮,從家到校時間較長的學生才住校,請問從家到校時間多少分鐘以上開始住校.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,BC=2$\sqrt{2}$,則三棱柱ABC-A1B1C1的外接球的表面積為( 。
A.36πB.28πC.16πD.12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等比數(shù)列,則“a1>0”是“a2017>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等比數(shù)列{an}的公比為正數(shù),前n項和為Sn,a1+a2=2,a3+a4=6,則S8等于( 。
A.$81-27\sqrt{3}$B.54C.38-1D.80

查看答案和解析>>

同步練習冊答案