分析 (I)連接AE,DE,AC,利用勾股定理計(jì)算DE得出E為SC的中點(diǎn),再由中位線定理得EF∥AC,故而EF∥平面ABCD;
(II)以D為原點(diǎn)建立空間直角坐標(biāo)系,求出平面SAB的法向量$\overrightarrow{n}$和$\overrightarrow{SC}$的坐標(biāo),則直線SE與平面SAB所成角的正弦值為|cos<$\overrightarrow{n}$,$\overrightarrow{SC}$>|.
解答 證明:(I)連接AE,DE,AC,
∵AD⊥平面SCD,DE?平面SCD,
∴AD⊥DE,
∴DE=$\sqrt{A{E}^{2}-A{D}^{2}}$=1,
又∵CD=SD=2,∠SDC=120°,
∴E是SC的中點(diǎn),又F是SA的中點(diǎn),
∴EF∥AC,
又EF?平面ABCD,AC?平面ABCD,
∴EF∥平面ABCD.
(II)在平面SCD內(nèi)過點(diǎn)D作SD的垂線交SC于M,
以D為原點(diǎn),以DM為x軸,DS為y軸,DA為z軸建立空間直角坐標(biāo)系D-xyz,
∴D(0,0,0),S(0,2,0),A(0,0,2),C($\sqrt{3}$,-1,0),B($\sqrt{3}$,-1,1),
∴$\overrightarrow{SC}$=($\sqrt{3}$,-3,0),$\overrightarrow{SA}$=(0,-2,2),$\overrightarrow{SB}$=($\sqrt{3}$,-3,1),
設(shè)平面SAB的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SA}=0}\\{\overrightarrow{n}•\overrightarrow{SB}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-2y+2z=0}\\{\sqrt{3}x-3y+z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=($\frac{2\sqrt{3}}{3}$,1,1),
∴cos<$\overrightarrow{n}$,$\overrightarrow{SC}$>=$\frac{\overrightarrow{n}•\overrightarrow{SC}}{|\overrightarrow{n}||\overrightarrow{SC}|}$=$\frac{-1}{\sqrt{\frac{10}{3}}×2\sqrt{3}}$=-$\frac{\sqrt{10}}{20}$.
設(shè)直線SE與平面SAB所成角為θ,則sinθ=|cos<$\overrightarrow{n}$,$\overrightarrow{SC}$>|=$\frac{\sqrt{10}}{20}$.
點(diǎn)評 本題考查了線面平行的判定,空間角的計(jì)算,空間向量的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com