4.正方體ABCD-A1B1C1D1中,棱長為$\sqrt{3}$,各面上到A點距離為2的點所圍成的封閉曲線的長度是$\frac{5π}{2}$.

分析 正方體的各個面根據(jù)與球心位置關系分成兩類:ABCD、AA1DD1、AA1BB1為過球心的截面,截痕為大圓弧,各弧圓心角為$\frac{π}{6}$,A1B1C1D1、B1BCC1、D1DCC1為與球心距離為1的截面,截痕為小圓弧,由于截面圓半徑為r=1,故各段弧圓心角為$\frac{π}{2}$這條曲線長度為3•$\frac{π}{6}$•2+3•$\frac{π}{2}$?•=$\frac{5π}{2}$.

解答 解:由題意,此問題的實質(zhì)是以A為球心、2為半徑的球在正方體ABCD-A1B1C1D1各個面上交線的長度計算,
正方體的各個面根據(jù)與球心位置關系分成兩類:ABCD、AA1DD1、AA1BB1為過球心的截面,截痕為大圓弧,

由AB=$\sqrt{3}$,AE=2,cos∠EAB=$\frac{AB}{AE}$=$\frac{\sqrt{3}}{2}$,
∴∠DAF=∠EAB=$\frac{π}{6}$,
則∠FAE=$\frac{π}{6}$,
同理可知:各弧圓心角為$\frac{π}{6}$,
A1B1C1D1、B1BCC1、D1DCC1為與球心距離為1的截面,截痕為小圓弧,
由于截面圓半徑為r=1,故各段弧圓心角為$\frac{π}{2}$
∴這條曲線長度為3•$\frac{π}{6}$•2+3•$\frac{π}{2}$•=$\frac{5π}{2}$,
故答案為:$\frac{5π}{2}$.

點評 本題考查點到直線距離公式的應用,考查空間想象能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.是否存在這樣的實數(shù)a,使得函數(shù)f(x)=x2+(3a-2)x+a-1圖象在區(qū)間(-1,3)上與x軸有且只有一個交點?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,BC=$\sqrt{2},AC=1,∠C=\frac{π}{4}$,則AB等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在幾何體SABCD中,AD⊥平面SCD,BC∥AD,AD=DC=2,BC=1,又SD=2,∠SDC=120°,F(xiàn)是SA的中點,E在SC上,AE=$\sqrt{5}$.
(Ⅰ)求證:EF∥平面ABCD;
(Ⅱ)求直線SE與平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(1-x)|,x<1}\\{-(x-2)^{2},x≥1}\end{array}\right.$,關于x的方程f(f(x))=1的實根個數(shù)為3個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)y=log3x的反函數(shù)為y=g(x),則$g(\frac{1}{2})$的值是(  )
A.3B.${log_3}\frac{1}{2}$C.log32D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.sin2010°的值等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是兩個不共線的向量,且$\overrightarrow a=\overrightarrow{e_1}+m\overrightarrow{e_2}$與$\overrightarrow b=-3\overrightarrow{e_1}-\overrightarrow{e_2}$共線,則m=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則下列正確的是( 。
A.p∨q為真B.p∧q為真C.p∨q為假D.q為真

查看答案和解析>>

同步練習冊答案