精英家教網 > 高中數學 > 題目詳情
設全集U=R,集合A={x|2x>1},B={x|-1≤x≤5},則(∁UA)∩B等于( 。
A、[-1,0)
B、(0,5]
C、[-1,0]
D、[0,5]
考點:交、并、補集的混合運算
專題:計算題
分析:求出A中不等式的解集確定出A,根據全集U=R求出A的補集,找出A補集與B的交集即可.
解答: 解:由A中的不等式變形得:2x>1=20,得到x>0,
∴A=(0,+∞),
∵全集U=R,
∴∁UA=(-∞,0],
∵B=[-1,5],
∴(∁UA)∩B=[-1,0].
故選:C.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且a<b<c,
3
a=2bsinA.
(Ⅰ)求角B的大;
(Ⅱ)若a=2,b=
7
,求c邊的長和△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

若球O的體積為36πcm3,則它的半徑等于
 
cm.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=2,則
sinα-cosα
sina+cosα
的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數方程
1+i
3i+z
=i(i為虛數單位),則復數z的虛部為( 。
A、2B、4iC、-2D、-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的偶函數,對任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2時,有
f(x1)-f(x2)
x1-x2
>0
成立,下列結論中錯誤的是( 。
A、f(3)=0
B、直線x=-6是函數y=f(x)的圖象的一條對稱軸
C、函數y=f(x)在[-9,9]上有四個零點
D、函數y=f(x)在[-9,-6]上為增函數

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F(xiàn)2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,拋物線y2=4x的焦點為橢圓E的一個焦點,直線y=x+
3
上到焦點F1,F(xiàn)2距離之和最小的點P恰好在橢圓E上.
(1)求橢圓E的方程;
(2)如圖,過點S(0,-
1
3
)的動直線l交橢圓于A、B兩點,是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:x=my+1過橢圓C:,
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,拋物線x2=4
3
y
的焦點為橢圓C的上頂點,且直線l交橢圓C于A,B兩點.
(1)求橢圓C的方程;
(2)若直線l交y軸于點M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當m變化時,λ12的值是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習冊答案