13.在△ABC中,角A,B,C所對的邊分別為a,b,c,且accosB-bccosA=3b2
(1)求$\frac{a}$的值;
(2)若角C為銳角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面積.

分析 (1)由accosB-bccosA=3b2,利用余弦定理可得$\frac{{a}^{2}+{c}^{2}-^{2}}{2}$-$\frac{^{2}+{c}^{2}-{a}^{2}}{2}$=3b2,化簡即可得出.
(2)由角C為銳角,sinC=$\frac{2\sqrt{2}}{3}$,可得cosC=$\sqrt{1-si{n}^{2}C}$.利用余弦定理可得$(\sqrt{11})^{2}$=a2+b2-2ab×$\frac{1}{3}$,與a=2b聯(lián)立解得b,a,即可得出.

解答 解:(1)∵accosB-bccosA=3b2
∴$\frac{{a}^{2}+{c}^{2}-^{2}}{2}$-$\frac{^{2}+{c}^{2}-{a}^{2}}{2}$=3b2,化為:a=2b,因此$\frac{a}$=2.
(2)∵角C為銳角,sinC=$\frac{2\sqrt{2}}{3}$,∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{1}{3}$.
∴$(\sqrt{11})^{2}$=a2+b2-2ab×$\frac{1}{3}$,化為:3a2+3b2-2ab=33,又a=2b,
聯(lián)立解得b2=3,∴S△ABC=$\frac{1}{2}ab$sinC=$\frac{1}{2}×2^{2}sinC$=$3×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$.

點評 本題考查了余弦定理、同角三角函數(shù)基本關(guān)系式、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=3,1+$\frac{tanA}{tanB}=\frac{2c}$,則b+c的最大值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知角θ的終邊過點(2sin2$\frac{π}{8}$-1,a),若sinθ=2$\sqrt{3}$sin$\frac{13π}{12}$cos$\frac{π}{12}$,則實數(shù)a等于( 。
A.-$\sqrt{6}$B.-$\frac{\sqrt{6}}{2}$C.±$\sqrt{6}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某儀器廠從新生產(chǎn)的一批零件中隨機抽取40個檢測,如圖是根據(jù)抽樣檢測后零件的質(zhì)量(單位:克)繪制的頻率分布直方圖,樣本數(shù)據(jù)分8組,分別為[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],則樣本的中位數(shù)在( 。
A.第3組B.第4組C.第5組D.第6組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0,2$\sqrt{2}$)是拋物線C上一點,圓M與y軸相切且與線段MF相交于點A,若$\frac{|MA|}{|AF|}$=2,則p等于(  )
A.1B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)實數(shù)x,y滿足x+$\frac{y}{4}$=1.
(1)若|7-y|<2x+3,求x的取值范圍;
(2)若x>0,y>0,求證:$\sqrt{xy}$≥xy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=8lnx+15x-x2,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項和Sn最大時,n=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y滿足$\left\{\begin{array}{l}{y≥x}&{\;}\\{x+y≤2}&{\;}\\{x≥a}&{\;}\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,則a=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點為極點,x軸正半軸為極軸的極坐標系中(單位長度相同),曲線C的極坐標方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C交于A、B兩點,求弦長|AB|.

查看答案和解析>>

同步練習(xí)冊答案