4.某企業(yè)根據(jù)市場需求,決定生產(chǎn)一款大型設(shè)備,生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需投入成本C(x)萬元,若年產(chǎn)量不足80臺時(shí),C(x)=$\frac{1}{2}$x2+40x萬元,若年產(chǎn)量等于或超過80臺時(shí),C(x)=101x+$\frac{8100}{x}$-2180萬元,每臺設(shè)備售價(jià)為100萬元,通過市場分析該企業(yè)生產(chǎn)的這種設(shè)備能全部售完.
(1)求年利潤y(萬元)關(guān)于年產(chǎn)量x(臺)的函數(shù)關(guān)系;
(2)年產(chǎn)量為多少臺時(shí),該企業(yè)的設(shè)備的生產(chǎn)中所獲利潤最大?

分析 (1)0<x<80,有y=100x-($\frac{1}{2}$x2+40x)-500;x≥80,y=100x-(101x+$\frac{8100}{x}$-2180)-500,即可得出.
(2)由(1)可得:0<x<80時(shí),有y=-$\frac{1}{2}(x-60)^{2}$+1300,利用二次函數(shù)的單調(diào)性可得y的最大值.x≥80時(shí),y=1680-$(x+\frac{8100}{x})$,利用基本不等式的性質(zhì)即可得出最大值.綜上比較即可得出.

解答 解:(1)0<x<80,有y=100x-($\frac{1}{2}$x2+40x)-500=-$\frac{1}{2}{x}^{2}$+60x-500;
x≥80,y=100x-(101x+$\frac{8100}{x}$-2180)-500=1680-$(x+\frac{8100}{x})$.
∴y=$\left\{\begin{array}{l}{-\frac{1}{2}{x}^{2}+60x-500,0<x<80}\\{1680-(x+\frac{8100}{x}),x≥80}\end{array}\right.$.
(2)由(1)可得:0<x<80時(shí),有y=-$\frac{1}{2}(x-60)^{2}$+1300,
∴x=60時(shí),y取得最大值1300(萬元).
x≥80時(shí),y=1680-$(x+\frac{8100}{x})$≤1680-2$\sqrt{x×\frac{8100}{x}}$=1500,
當(dāng)且僅當(dāng)x=90時(shí)取等號.即當(dāng)x=90時(shí),y取得最大值1500(萬元).
綜上可得:年產(chǎn)量為90臺時(shí),該企業(yè)的設(shè)備的生產(chǎn)中所獲利潤最大為1500(萬元).

點(diǎn)評 本題考查了二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.定義在(-1,1)上的函數(shù)f(x)滿足下列條件:
①對任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+x+y}$);
②當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:
(1)f(x)是奇函數(shù);
(2)f(x)是單調(diào)遞減函數(shù);
(3)f($\frac{1}{11}$)+f($\frac{1}{19}$)+…+f($\frac{1}{{{n^2}+5n+5}}$)>f($\frac{1}{3}$),其中n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(m+1)x2+2(m-1)x在(0,4)上無極值,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列舉法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面積為a2sinB,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足4Sn=an+12-4n-4,n∈N*,且a2,a4,a8構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+$\frac{1}{{2}^{{a}_{n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線2x-y-3=0的傾斜角為θ,則sin2θ的值是( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{6}({x^2}+5x),0≤x<3\\ 10-2x,3≤x≤5\end{array}\right.,?m,n∈[{0,5}],m<n$,使得f(x)在定義域[m,n]上的值域?yàn)閇m,n],則這樣的實(shí)數(shù)對(m,n)共有(  )個(gè).
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
(1)求f(f(5))的值;
(2)畫出函數(shù)的圖象.

查看答案和解析>>

同步練習(xí)冊答案