16.如圖,矩形AnBnCnDn的一邊AnBn在x軸上,另外兩個頂點Cn,Dn在函數(shù)f(x)=x+$\frac{1}{2x}({x>0})$的圖象上.若點Bn的坐標為(n,0)(n∈N*),記矩形AnBnCnDn的周長為an,則a1+a2+…+a10( 。
A.208B.212C.216D.220

分析 先確定Cn的縱坐標,Dn的橫坐標,進而可得矩形AnBnCnDn的周長,利用等差數(shù)列的求和公式,即可求得結論.

解答 解:由題意,∵Cn,Dn在函數(shù)f(x)=x+$\frac{1}{x}$(x>0)的圖象上.
若點Bn的坐標為(n,0)(n≥2,n∈N+),
∴Cn的縱坐標為n+$\frac{1}{n}$,Dn的橫坐標為$\frac{1}{n}$,
∴矩形AnBnCnDn的一條邊長為n+$\frac{1}{n}$,另一條邊長為n-$\frac{1}{n}$,
∴矩形AnBnCnDn的周長為an=2(n+$\frac{1}{n}$+n-$\frac{1}{n}$)=4n
∴a1+a2+a3+…+a10=4(1+2+3+…+10)=4×$\frac{10(1+10)}{2}$=220.
故選:D.

點評 本題考查數(shù)列的前10項和的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.求數(shù)列$\frac{2}{1×2}$,$\frac{2}{2×3}$,$\frac{2}{3×4}$,$\frac{2}{4×5}$,…的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知圓C的方程為(x-3)2+(y-4)2=22,平面上有A(1,0),B(-1,0)兩點,點Q在圓C上,則△ABQ的面積的最大值是( 。
A.6B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若復數(shù)z滿足2z+$\overline{z}$=3-2i,其中i為虛數(shù)單位,則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,則sinβ的值為$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=x2+3xf'(2),則f(2)=-8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,首項為a1且1,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直線3x+4y+a=0上存在點M滿足過點M作圓(x-2)2+(y-1)2=2的兩條切線互相垂直,則a的取值范圍是( 。
A.(-20,0]B.[-20,0]C.[-20,0)D.(-20,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\vec a=(2cosx,\sqrt{3}cosx)$,$\vec b=(cosx,2sinx)$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$(x∈R)
(1)求函數(shù)f(x)的周期;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$內恒有兩個不相等的實數(shù)解,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案