5.直線3x+4y+a=0上存在點M滿足過點M作圓(x-2)2+(y-1)2=2的兩條切線互相垂直,則a的取值范圍是( 。
A.(-20,0]B.[-20,0]C.[-20,0)D.(-20,0)

分析 由切線的對稱性和圓的知識將問題轉(zhuǎn)化為C(2,1)到直線3x+4y+a=0的距離小于或等于2,再由點到直線的距離公式得到關(guān)于a的不等式求解.

解答 解:圓(x-2)2+(y-1)2=2的圓心為:C(2,1),半徑為$\sqrt{2}$,
∵直線3x+4y+a=0上存在點M使得過P的圓C的兩條切線互相垂直,
∴在直線上存在一點M,使得P到C(0,0)的距離等于2,
∴只需C(2,1)到直線3x+4y+a=0的距離小于或等于2,
故$\frac{|10+a|}{5}$≤2,解得-20≤a≤0,
故選:B.

點評 本題考查直線和圓的位置關(guān)系,由題意得到C(2,1)到直線3x+4y+a=0的距離小于或等于2是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\frac{a+2i}{i}$=b+i(a,b是實數(shù)),其中i是虛數(shù)單位,則ab=( 。
A.-2B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,矩形AnBnCnDn的一邊AnBn在x軸上,另外兩個頂點Cn,Dn在函數(shù)f(x)=x+$\frac{1}{2x}({x>0})$的圖象上.若點Bn的坐標(biāo)為(n,0)(n∈N*),記矩形AnBnCnDn的周長為an,則a1+a2+…+a10( 。
A.208B.212C.216D.220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)fk(x)=ax+ka-x,(k∈Z,a>0且a≠1).
(Ⅰ)若f1(1)=3,求f1($\frac{1}{2}$)的值;
(Ⅱ)若fk(x)為定義在R上的奇函數(shù),且a>1,是否存在實數(shù)λ,使得fk(cos2x)+fk(2λsinx-5)<0對任意x∈[0,$\frac{2π}{3}$]恒成立,若存在,請求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$f(x)=\left\{\begin{array}{l}x+1,({0≤x<1})\\{2^x}-\frac{1}{2},({x≥1})\end{array}\right.$,設(shè)a>b≥0,若f(a)=f(b),則b•f(a)的取值范圍是( 。
A.(1,2]B.$({\frac{3}{4},2}]$C.$[{\frac{3}{4},2})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若${({1-2x})^{2013}}={a_0}+{a_1}x+…+{a_{2013}}{x^{2013}}({x∈R})$,則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2013}}}}{{{2^{2014}}}}$值為( 。
A.1B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分圖象如圖所示,則下列結(jié)論錯誤的是( 。
A.$φ=-\frac{π}{4}$
B.函數(shù)f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上單調(diào)遞增
C.函數(shù)f(x)的一條對稱軸是$x=\frac{3π}{4}$
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在空間直角坐標(biāo)系中,點A(1,-2,3)與點B(-1,-2,-3)關(guān)于( 。⿲ΨQ.
A.x軸B.y軸C.z軸D.原點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a,b是兩個正數(shù),且a,b,-4這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b的值等于10.

查看答案和解析>>

同步練習(xí)冊答案