分析 令t=x+$\frac{1}{x}$,得出關(guān)于t的方程t2+mt+n-2=0在(-∞,-2]∪[2,+∞)上有解,根據(jù)零點的存在性定理列不等式,作出平面區(qū)域,根據(jù)m2+n2的幾何意義解出.
解答 解:f(x)=x2+mx+$\frac{mx+1}{{x}^{2}}$+n=${x}^{2}+\frac{1}{{x}^{2}}+m(x+\frac{1}{x})+n$=$(x+\frac{1}{x})^{2}+m(x+\frac{1}{x})+n-2$.
令x+$\frac{1}{x}$=t,當x>0時,t≥2;當x<0時,t≤-2.
∵函數(shù)f(x)在定義域上有零點,∴方程t2+mt+n-2=0在(-∞,-2]∪[2,+∞)上有解,
∴2-2m+n≤0或2+2m+n≤0,
作出平面區(qū)域如圖所示:
由圖形可知平面區(qū)域內(nèi)的點到原點的最短距離d=$\frac{2}{\sqrt{5}}$,
∴m2+n2≥$\frac{4}{5}$.
故答案為:[$\frac{4}{5}$,+∞).
點評 本題考查了零點的存在性定理,線性規(guī)劃的應(yīng)用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 150° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 20 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com