【題目】已知 mn 是兩條不同的直線,αβ、γ是三個(gè)不同的平面,下列命題中正確的是(

A.αβ , βγ ,則αγ

B. , , mn ,則αβ

C. mn 是異面直線, mβ , nα ,則αβ

D.平面α內(nèi)有不共線的三點(diǎn)到平面 β的距離相等,則αβ

【答案】C

【解析】

中,相交或平行;在中,相交或平行;在中,由面面平行的判定定理得;在中,相交或平行.

解:由是兩條不同的直線,、是三個(gè)不同的平面,知:

中,若,則相交或平行,故錯(cuò)誤;

中,若,,,則相交或平行,故錯(cuò)誤;

中,若,是異面直線,,,,則由面面平行的判定定理得,故正確;

中,平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則相交或平行,故錯(cuò)誤.

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減,②存在常數(shù),使其值域?yàn)?/span>,則稱函數(shù)是函數(shù)的“漸近函數(shù)”.

(1)判斷函數(shù)是不是函數(shù)的“漸近函數(shù)”,說明理由;

(2)求證:函數(shù)不是函數(shù)的“漸近函數(shù)”;

(3)若函數(shù),,求證:當(dāng)且僅當(dāng)時(shí),的“漸近函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊三角形邊角地,如圖,,,.(單位為百米).欲利用這塊地修一個(gè)三角形形狀的草坪(圖中)供市民休閑,其中點(diǎn)在邊上,點(diǎn)在邊上,沿的三邊修建休閑長(zhǎng)廊,規(guī)劃部門要求的面積占面積的一半,設(shè)(百米),的周長(zhǎng)為(百米)

(1)求出函數(shù)的解析式及定義域

(2)求出休閑長(zhǎng)廊總長(zhǎng)度的取值范圍,并確定當(dāng)取到最大值時(shí)點(diǎn),的位置

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

1)存在實(shí)數(shù)使;

2)直線是函數(shù)圖象的一條對(duì)稱軸;

3)的值域是

4)若,都是第一象限角,且,則

其中正確命題的序號(hào)為(

A.1)(2B.2)(3C.3)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足.

1)求數(shù)列的通項(xiàng)公式;

2)記,是數(shù)列的前項(xiàng)和,若對(duì)任意的,不等式都成立,求實(shí)數(shù)的取值范圍;

3)記,是否存在互不相等的正整數(shù),,使,成等差數(shù)列,且,,成等比數(shù)列?如果存在,求出所有符合條件的,;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在常數(shù) kkN * , k≥2)、d、t d , tR),使得無窮數(shù)列 {a n }滿足a n +1,則稱數(shù)列{an }段差比數(shù)列,其中常數(shù) k、d、t 分別叫做段長(zhǎng)、段差、段比.設(shè)數(shù)列 {bn }段差比數(shù)列

1)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、 2 、 d t .若 {bn }是等比數(shù)列,求 d t 的值;

2)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、3 、3 、1,其前 3n 項(xiàng)和為 S3n .若不等式 S3nλ 3n1對(duì) n N *恒成立,求實(shí)數(shù) λ 的取值范圍;

3)是否存在首項(xiàng)為 b,段差為 dd ≠ 0 )的段差比數(shù)列” {bn },對(duì)任意正整數(shù) n 都有 bn+6 = bn ,若存在, 寫出所有滿足條件的 {bn }的段長(zhǎng) k 和段比 t 組成的有序數(shù)組 (k, t );若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計(jì)

捐款超過500元

30

捐款低于500元

6

合計(jì)

(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則

②若,,則

③若,則

④若,,則

其中正確命題的序號(hào)是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 的左右焦點(diǎn)分別為,過的直線分別交雙曲線左右兩支于點(diǎn)MN.若以MN為直徑的圓經(jīng)過點(diǎn),則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案