分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤x-$\frac{2}{x}$在[1,+∞)恒成立令g(x)=x-$\frac{2}{x}$,x∈[1,+∞),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(1)a=1時(shí),f(x)=4x+x2-$\frac{2}{3}$x3,
f′(x)=4+2x-2x2,
令f′(x)>0,解得:-1<x<2,
令f′(x)<0,解得:x>2或x<-1,
故f(x)在(-∞,-1)遞減,在(-1,2)遞增,在(2,+∞)遞減;
(2)f′(x)=4+2ax-2x2,
若f(x)在[1,+∞)遞減,
則2ax≤2x2-4即a≤x-$\frac{2}{x}$在[1,+∞)恒成立,
令g(x)=x-$\frac{2}{x}$,x∈[1,+∞),
則g′(x)=1+$\frac{2}{{x}^{2}}$>0,
則g(x)在[1,+∞)遞增,
g(x)≥g(1)=-1,
故a≤-1.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 252 | B. | 189 | C. | 126 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{51}{10}$ | B. | $\frac{30}{7}$ | C. | $\frac{65}{12}$ | D. | $\frac{23}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com