13.設(shè)α為銳角,sinα=$\frac{3}{5}$,則cosα=( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{16}{25}$D.$-\frac{16}{25}$

分析 α為銳角,cosα>0,利用同角三角函數(shù)間的基本關(guān)系,即可求得.

解答 解:∵α為銳角,cosα>0,
sinα=$\frac{3}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$.
故選:A.

點評 本題考查同角三角函數(shù)間的基本關(guān)系,考查運算能力,是基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.某研究所設(shè)計了一款智能機器人,為了檢驗設(shè)計方案中機器人動作完成情況,現(xiàn)委托某工廠生產(chǎn)500個機器人模型,并對生產(chǎn)的機器人進行編號:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的機器人樣本,試驗小組對50個機器人樣本的動作個數(shù)進行分組,頻率分布直方圖及頻率分布表中的部分數(shù)據(jù)如圖所示,請據(jù)此回答如下問題:
分組機器人數(shù)頻率
[50,60)0.08
[60,70)10
[70,80)10
[80,90)
[90,100]6
(1)補全頻率分布表,畫出頻率分布直方圖;
(2)若隨機抽的第一個號碼為003,這500個機器人分別放在A,B,C三個房間,從001到200在A房間,從201到355在B房間,從356到500在C房間,求B房間被抽中的人數(shù)是多少?
(3)從動作個數(shù)不低于80的機器人中隨機選取2個機器人,該2個機器人中動作個數(shù)不低于90的機器人記為ξ,求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在斜三棱柱ABC-A′B′C′中,AC=BC=A′A=A′C=$\sqrt{2}$,A′在底面ABC上的射影為AB的中點D,E為線段BC的中點.
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求三棱錐D-B′BE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{2kx}{{x}^{2}+6k}$(k>0)
(1)若f(x)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;
(2)若任意x≥3,使得f(x)<1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=3cos2x-4sinx+1的值域為[-3,$\frac{16}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=cos2(x-$\frac{π}{6}$)-cos2x,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求y=f(x)在區(qū)間$[{-\frac{π}{3},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.$2(\overrightarrow a-\overrightarrow b)-4(\overrightarrow a+\overrightarrow b)$=-2$\overrightarrow{a}$-6$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.計算1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(  )
A.37-$\frac{1}{{2}^{8}}$B.36C.36-$\frac{1}{{2}^{8}}$D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓的中心在原點,焦點在y軸上且長軸長為4,短軸長為2,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$ (t為參數(shù)).
(1)求橢圓方程;
(2)當m為何值時,直線l被橢圓截得的弦長為$\sqrt{6}$?

查看答案和解析>>

同步練習冊答案