已知時(shí)有極大值6,在時(shí)有極小值
的值;并求在區(qū)間[-3,3]上的最大值和最小值.

在區(qū)間[-3,3]上,當(dāng)時(shí),時(shí),

解析試題分析:解: 2分
由條件知
 6分

x
-3
(-3,-2)
-2
(-2,1)
1
(1,3)
3

 

0

0

 



6




10分    
由上表知,在區(qū)間[-3,3]上,當(dāng)時(shí),
時(shí), 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是根據(jù)導(dǎo)數(shù)的符號判定函數(shù)單調(diào)性,進(jìn)而得到極值和最值,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為偶函數(shù),曲線過點(diǎn)(2,5), .
(1)若曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx-.
(1)當(dāng)時(shí),判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的極值;
(2)當(dāng)時(shí),求的值域;
(3)設(shè),函數(shù),若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為常數(shù),已知函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
(1)設(shè)為函數(shù)的圖像上任意一點(diǎn),求點(diǎn)到直線的距離的最小值;
(2)若對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)處取得極值,對,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a為實(shí)數(shù), 函數(shù) 
(Ⅰ)求的極值.
(Ⅱ)當(dāng)a在什么范圍內(nèi)取值時(shí),曲線軸僅有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案