設(shè)函數(shù)時(shí)取得極值.
(1)求、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.

(1),(2)

解析試題分析:解:(1),
因?yàn)楹瘮?shù)取得極值,則有

解得,
(2)由(1)可知,,

當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),
所以,當(dāng)時(shí),取得極大值,又
則當(dāng)時(shí),的最大值為
因?yàn)閷?duì)于任意的,有恒成立,
所以 ,
解得 
因此的取值范圍為
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是根據(jù)導(dǎo)數(shù)的符號(hào)于函數(shù)單調(diào)性的關(guān)系來得到函數(shù)的極值和最值,得到求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù);

(1)若處取極值,求的值;
(2)設(shè)直線將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個(gè)區(qū)域(不包括邊界),若圖象恰好位于其中一個(gè)區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知時(shí)有極大值6,在時(shí)有極小值
的值;并求在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)已知函數(shù)h(x)=g(x)+ax3的一個(gè)極值點(diǎn)為1,求a的取值;
(2) 求函數(shù)上的最小值;
(3)對(duì)一切恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,的導(dǎo)函數(shù),滿足
(1)求的單調(diào)區(qū)間.
(2)設(shè),,求函數(shù)上的最大值;

查看答案和解析>>

同步練習(xí)冊(cè)答案