A. | $\frac{{\sqrt{2}}}{8}$ | B. | $\frac{{\sqrt{2}}}{6}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
分析 由題意,直線l:y=k(x+2)過定點(-2,0),曲線$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,即(x-1)2+y2=1(y≥0),表示以(1,0)為圓心,1為半徑的上半圓,求出直線l與曲線Γ有兩個交點的充要條件,以長度為測度,即可求出概率.
解答 解:由題意,直線l:y=k(x+2)過定點(-2,0),曲線$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,即(x-1)2+y2=1(y≥0),表示以(1,0)為圓心,1為半徑的上半圓,
直線與半圓相切時,k=$\frac{1}{\sqrt{9-1}}$=$\frac{\sqrt{2}}{4}$,∴直線l與曲線Γ有兩個交點的充要條件為0<k<$\frac{\sqrt{2}}{4}$,
∴所求概率P=$\frac{\frac{\sqrt{2}}{4}-0}{1-(-1)}$=$\frac{\sqrt{2}}{8}$,
故選A.
點評 本題考查概率知識的運用,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,確定直線l與曲線Γ有兩個交點的充要條件是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | -2015 | D. | -2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$($\overrightarrow{a}+\overrightarrow$) | B. | -$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$) | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$ | D. | $\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com