【題目】某機(jī)床廠今年初用98萬(wàn)元購(gòu)進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年的維修、保養(yǎng)修費(fèi)用比上一年增加4萬(wàn)元,該機(jī)床使用后,每年的總收入為50萬(wàn)元,設(shè)使用x年后數(shù)控機(jī)床的盈利總額y元.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)從第幾年開(kāi)始,該機(jī)床開(kāi)始盈利?
(3)使用若干年后,對(duì)機(jī)床的處理有兩種方案:①當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬(wàn)元價(jià)格處理該機(jī)床;②當(dāng)盈利額達(dá)到最大值時(shí),以12萬(wàn)元價(jià)格處理該機(jī)床.問(wèn)哪種方案處理較為合理?請(qǐng)說(shuō)明理由.
【答案】
(1)解:y=﹣2x2+40x﹣98,x∈N*
(2)解:由﹣2x2+40x﹣98>0解得, ,且x∈N*,
所以x=3,4,,17,故從第三年開(kāi)始盈利
(3)解:由 ,當(dāng)且僅當(dāng)x=7時(shí)“=”號(hào)成立,
所以按第一方案處理總利潤(rùn)為﹣2×72+40×7﹣98+30=114(萬(wàn)元).
由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,
所以按第二方案處理總利潤(rùn)為102+12=114(萬(wàn)元).
∴由于第一方案使用時(shí)間短,則選第一方案較合理
【解析】(1)贏利總額y元即x年中的收入50x減去購(gòu)進(jìn)機(jī)床的成本與這x年中維修、保養(yǎng)的費(fèi)用,維修、保養(yǎng)的費(fèi)用歷年成等差數(shù)增長(zhǎng),(2)由(1)的結(jié)論解出結(jié)果進(jìn)行判斷得出何年開(kāi)始贏利.(3)算出每一種方案的總盈利,比較大小選擇方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=mx2﹣2x﹣3,關(guān)于實(shí)數(shù)x的不等式f(x)≤0的解集為(﹣1,n)
(1)當(dāng)a>0時(shí),解關(guān)于x的不等式:ax2+n+1>(m+1)x+2ax;
(2)是否存在實(shí)數(shù)a∈(0,1),使得關(guān)于x的函數(shù)y=f(ax)﹣3ax+1(x∈[1,2])的最小值為﹣5?若存在,求實(shí)數(shù)a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來(lái)的機(jī)遇, 決定開(kāi)發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬(wàn)元, 每生產(chǎn)臺(tái),需另投入成本(萬(wàn)元), 當(dāng)年產(chǎn)量不足臺(tái)時(shí), (萬(wàn)元); 當(dāng)年產(chǎn)量不小于臺(tái)時(shí) (萬(wàn)元), 若每臺(tái)設(shè)備售價(jià)為萬(wàn)元, 通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤(rùn) (萬(wàn)元)關(guān)于年產(chǎn)量(臺(tái))的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,若存在唯一的正整數(shù)x0 , 使得f(x0)≥0,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面積為,求sinA+sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn , 點(diǎn)(n, )在直線y= x+ 上.?dāng)?shù)列{bn}滿足bn+2﹣2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和Tn
(3)設(shè)n∈N* , f(n)= 問(wèn)是否存在m∈N* , 使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用紅、黃、藍(lán)三種不同顏色給圖中3個(gè)矩形隨機(jī)涂色,每個(gè)矩形只涂一種顏色,求:
(1)3個(gè)矩形顏色都相同的概率;
(2)3個(gè)矩形顏色都不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為.
(Ⅰ)求比賽三局甲獲勝的概率;
(Ⅱ)求甲獲勝的概率;
(Ⅲ)設(shè)甲比賽的次數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①經(jīng)過(guò)定點(diǎn)P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示;
②經(jīng)過(guò)定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示;
③不經(jīng)過(guò)原點(diǎn)的直線都可以用方程 + =1表示;
④經(jīng)過(guò)任意兩個(gè)不同的 點(diǎn)P1(x1 , y1)、P2(x2 , y2)的直線都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com