5.已知等差數(shù)列{an}中,a1+a9=16,a4=1,則a6的值是( 。
A.64B.31C.30D.15

分析 由待等差數(shù)列的通項公式列出方程組,求出首項與公差,由此能求出該數(shù)列的第6項.

解答 解:∵等差數(shù)列{an}中,a1+a9=16,a4=1,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+8d=16}\\{{a}_{1}+3d=1}\end{array}\right.$,
解得a1=-20,d=7,
∴a6=-20+5×7=15.
故選:D.

點評 本題考查等差數(shù)列的第6項的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.網(wǎng)購已成為當今消費者喜歡的購物方式,某機構(gòu)對A、B、C、D四家同類運動服裝網(wǎng)店的關(guān)注人數(shù)x(千人)與其商品銷售件數(shù)y(百件)進行統(tǒng)計對比,得到表格:
 網(wǎng)店名稱 A B C D
 x 3 4 6 7
 y 11 12 2017
由散點圖得知,可以用回歸直線方程y=bx+a來近似刻畫它們之間的關(guān)系
(1)求y與x的回歸直線方程;
(2)在(1)的回歸模型中,請用R2說明,銷售件數(shù)的差異有多大程度是由關(guān)注人數(shù)引起的?(精確到0.01)
參考公式::$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$;$\hat a=\overline y-\hat b\overline x$;R2═1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
參考數(shù)據(jù):$\sum_{i=1}^{n}$xiyi=320;$\sum_{i=1}^{n}$x2=110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若兩個圓心角相同的扇形的面積之比為1:4,則這兩個扇形的周長之比為(  )
A.1:$\sqrt{2}$B.1:2C.1:4D.1:2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.計算機執(zhí)行如圖所示的程序段后,輸出的結(jié)果是(  )
A.2B.3C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若sin(π-α)=$\frac{3\sqrt{10}}{10}$,且α是銳角,則tan2α=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m-3,m+3),則實數(shù)c的值為(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面直角坐標系xOy中,曲線G:y=$\frac{{x}^{2}}{2}$+$\frac{a}{2}$x-a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標軸有三個交點,求經(jīng)過這三個交點的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點M(0,3),在y軸上存在定點N(異于點M)滿足:對于圓C上任一點P,都有$\frac{|PN|}{|PM|}$為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(3,6),λ為實數(shù),若($\overrightarrow{a}$+λ$\overrightarrow$)∥$\overrightarrow{c}$,則λ等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn),H分別是BC,PC,PD的中點.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)設(shè)平面PAB∩平面PCD=l,求證:FH∥l;
(Ⅲ)設(shè)H是棱PD上的動點,若EH與平面PAD所成最大角的正切值為$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案