【題目】某地區(qū)有800名學(xué)員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,,規(guī)定90分及以上為合格:
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖估計(jì)該地區(qū)學(xué)員交通法規(guī)考試合格的概率;
(3)若三個(gè)人參加交通法規(guī)考試,估計(jì)這三個(gè)人至少有兩人合格的概率.
【答案】(1)(2)(3)
【解析】
(1)由頻率分布直方圖中小矩形面積之和為1,能求出a.
(2)規(guī)定90分及以上為合格,根據(jù)頻率分布直方圖能估計(jì)該地區(qū)學(xué)員交通法規(guī)考試合格的概率.
(3)三個(gè)人參加交通法規(guī)考試,利用n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率計(jì)算公式能估計(jì)這三個(gè)人至少有兩人合格的概率.
(1)由頻率分布直方圖,知:
,
解得.
(2)規(guī)定90分及以上為合格,
根據(jù)頻率分布直方圖估計(jì)該地區(qū)學(xué)員交通法規(guī)考試合格的概率:
.
(3)三個(gè)人參加交通法規(guī)考試,
估計(jì)這三個(gè)人至少有兩人合格的概率:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,定義橢圓C的“相關(guān)圓”E為:.若拋物線的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關(guān)圓”E的方程;
(2)過“相關(guān)圓”E上任意一點(diǎn)P作其切線l,若l 與橢圓交于A,B兩點(diǎn),求證:為定值(為坐標(biāo)原點(diǎn));
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項(xiàng)為p,公差為,對于不同的自然數(shù),直線與軸和指數(shù)函數(shù)的圖象分別交于點(diǎn)與(如圖所示),記的坐標(biāo)為,直角梯形、的面積分別為和,一般地記直角梯形的面積為.
(1)求證:數(shù)列是公比絕對值小于1的等比數(shù)列;
(2)設(shè)的公差,是否存在這樣的正整數(shù),構(gòu)成以,,為邊長的三角形?并請說明理由;
(3)設(shè)的公差為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列各項(xiàng)的和?并請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若存在常數(shù),對任意都有,則稱函數(shù)為T倍周期函數(shù).
(1)判斷是否是T倍周期函數(shù),并說明理由;
(2)證明是T倍周期函數(shù),且T的值是唯一的;
(3)若是2倍周期函數(shù),,,表示的前n項(xiàng)和,,若恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,、是兩個(gè)垃圾中轉(zhuǎn)站,在的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個(gè)垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個(gè)要求(、、可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測得、兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè).
(1)求(用的表達(dá)式表示);
(2)垃圾發(fā)電廠該如何選址才能同時(shí)滿足上述要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)圖象上不同兩點(diǎn),,,處的切線的斜率分別是,,規(guī)定叫曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:
(1)函數(shù)圖象上兩點(diǎn)、的橫坐標(biāo)分別為1,2,則;
(2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
(3)設(shè)點(diǎn)、是拋物線,上不同的兩點(diǎn),則;
(4)設(shè)曲線上不同兩點(diǎn),,,,且,若恒成立,則實(shí)數(shù)的取值范圍是;
以上正確命題的序號為__(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設(shè)計(jì)各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護(hù)文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費(fèi)用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com