16.如圖,在正四棱錐S-ABCD中,E.M.N分別是BC.CD.SC的中點(diǎn),動點(diǎn)P的線段MN上運(yùn)動時(shí),下列四個(gè)結(jié)論:
①EP⊥AC;   ②EP∥BD;③EP∥平面SBD;  ④EP⊥平面SAC
恒成立的是①③.(把正確的序號都填上)

分析 在①中:由已知得SO⊥AC.,AC⊥平面SBD,從而平面EMN∥平面SBD,由此得到AC⊥EP;在②中:由異面直線的定義可知:EP與BD是異面直線;在③中:由平面EMN∥平面SBD,從而得到EP∥平面SBD;在④中:由已知得EM⊥平面SAC,從而得到EP與平面SAC不垂直.

解答 解:解:如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.
在①中:由正四棱錐S-ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分別是BC,CD,SC的中點(diǎn),
∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正確.
在②中:由異面直線的定義可知:EP與BD是異面直線,
不可能EP∥BD,因此不正確;
在③中:由①可知平面EMN∥平面SBD,
∴EP∥平面SBD,因此正確.
在④中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,則EP∥EM,與EP∩EM=E相矛盾,
因此當(dāng)P與M不重合時(shí),EP與平面SAC不垂直.即不正確.
∴恒成立的結(jié)論是:①③.
故答案為:①③.

點(diǎn)評 本題考查了命題的真假判斷與應(yīng)用,考查空間線面、面面的位置關(guān)系判定,考查空間想象能力和思維能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+kn$,其中k為常數(shù),a6=13.
(1)求k的值及數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{2}{{n({a_n}+1)}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若在區(qū)間[0,e]內(nèi)隨機(jī)取一個(gè)數(shù)x,則代表數(shù)x的點(diǎn)到區(qū)間兩端點(diǎn)距離均大于$\frac{e}{3}$的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且2Sn=an2+an,等比數(shù)列{bn}的公比q>1,b1=2,且b1,b3,b2+10成等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an•bn+(-1)n$\frac{2n+1}{{{a_n}•{a_{n+1}}}}$,記T2n=c1+c2+c3+…+c2n,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若將兩個(gè)頂點(diǎn)在拋物線y2=4x上,另一個(gè)頂點(diǎn)是此拋物線焦點(diǎn)的正三角形的個(gè)數(shù)記為n,則( 。
A.n=0B.n=1C.n=2D.n≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{n+1}={a}_{n}+p•{2}^{n}-nq(n∈{N}^{*})}\end{array}\right.$其中p,q∈R.
(1)若數(shù)列前四項(xiàng)a1,a2,a3,a4依次成等差數(shù)列,求p,q的值;
(2)若q=0,且數(shù)列{an}為等比數(shù)列,求p的值;
(3)若p=1,且a5是數(shù)列{an}的最小項(xiàng),求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的方程${log_2}({x^2}-2x+5)-|{2a-1}|=0$在x∈[0,3]上有解.
(Ⅰ)求正實(shí)數(shù)a取值所組成的集合A;
(Ⅱ)若t2-at-3≥0對任意a∈A恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2
(I)記$F(x)=\frac{f(x)}{g(x)}$.
(i)討論函數(shù)F(x)單調(diào)性;
(ii)證明當(dāng)m>0時(shí),F(xiàn)(-1+m)>F(-1-m)恒成立;
(II)令G(x)=af(x)+g(x)(a∈R),設(shè)函數(shù)G(x)有兩個(gè)零點(diǎn),求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某高中學(xué)校為展示學(xué)生的青春風(fēng)采,舉辦了校園歌手大賽,該大賽分為預(yù)賽和決賽兩個(gè)階段,參加決賽的學(xué)生按照抽簽方式?jīng)Q定出場順序,通過預(yù)賽,選拔出甲、乙等5名學(xué)生參加決賽.
(I)求決賽中學(xué)生甲、乙恰好排在前兩位的概率;
(Ⅱ)若決賽中學(xué)生甲和學(xué)生乙之間間隔的人數(shù)記為X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊答案