過拋物線y2=4x焦點F做直線l,交拋物線于A(x1,y1),B(x2,y2)兩點,若線段AB中點橫坐標為3,則|AB|=( 。
A、6B、8C、10D、12
考點:拋物線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:根據(jù)拋物線的定義可得:|AB|=x1+x2+2,運用中的公式可得答案.
解答: 解:∵y2=4x焦點F做直線l,交拋物線于A(x1,y1),B(x2,y2)兩點,
∴根據(jù)拋物線的定義可得:|AB|=x1+x2+2,
∵線段AB中點橫坐標為3,
∴x1+x2=6,
∴∴|AB|=x1+x2+2=8,
故選:B
點評:本題考查了拋物線的定義,焦點弦的性質,運算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

畫出下列函數(shù)的圖象,并寫出它們的定義域、值域、單調區(qū)間、最大最小值.
(1)y=x+1;     
(2)y=x2-|x|-3;         
(3)y=
x2-1
x+1
;          
(4)y=|x-2|+|x+1|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>0,則x+
2
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義行列式的運算:
.
a1a2
b1b2
.
=a1b2-a2b1,若將函數(shù)f(x)=
.
3
sinx
1cosx
.
的圖象向左平移t(t>0)個單位,所得圖象對應的函數(shù)為偶函數(shù),則t的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題錯誤的是( 。
A、命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為“若方程x2+x-m=0無實數(shù)根,則m≤0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0
D、若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
a
=(1,2),
b
=(-2,y),若
a
b
,則|
b
|=( 。
A、
2
B、2
2
C、
5
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F(2,0),過F得直線交橢圓與A,B兩點,若AB的中點為 (
1
2
,
1
2
)
,則C得到方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}公比大于1的為等比數(shù)列,a3=2,a2+a4=
20
3

(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={0,1,2}的子集共有
 
個.

查看答案和解析>>

同步練習冊答案