定義行列式的運(yùn)算:
.
a1a2
b1b2
.
=a1b2-a2b1,若將函數(shù)f(x)=
.
3
sinx
1cosx
.
的圖象向左平移t(t>0)個(gè)單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則t的最小值為
 
考點(diǎn):二階行列式的定義,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:矩陣和變換
分析:f(x)=
3
cosx-sinx=2cos(x+
π
6
),平移后得到函數(shù)y=2cos(x+
π
6
+t),由此能求出t的最小值.
解答: 解:f(x)=
3
cosx-sinx=2cos(x+
π
6
),
平移后得到函數(shù)y=2cos(x+
π
6
+t),
則由題意得
π
6
+t=kπ
,t=kπ-
π
6
,k∈Z,
因?yàn)閠>0,所以t的最小值為
6

故答案為:
6
點(diǎn)評:本題考查滿足條件的實(shí)數(shù)的最小值的求法,是基礎(chǔ)題,解題時(shí)要注意二階行列式的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2|cosx|.
(1)求其定義域和值域;
(2)判斷奇偶性;
(3)判斷周期性,若是,求出其最小正周期;
(4)寫出單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
x
a

(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線為x-y-1=0,求a的值;
(Ⅱ)設(shè)g(x)=
x-a
ax
,a>0,證明:當(dāng)x>a,f(x)的圖象始終在g(x)圖象的下方;
(Ⅲ)當(dāng)a=1時(shí),h(x)=f(x)-e[1+
x
•g(x)],(e為自然對數(shù)的底數(shù)),h′(x)表示h(x)導(dǎo)函數(shù),求證:對于曲線C上的不同兩點(diǎn)A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直線AB的斜率等于h′(x0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an>0,an+12-an2=1(n∈N+),那么使an<3成立的n的最大值為( 。
A、3B、4C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,則下列式子成立的是(  )
A、sinA=sinB
B、sinA=cosB
C、tanA=tanB
D、cosA=tanB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱柱ABC-A1B1C1的底面邊長為2,側(cè)棱長為2
3
,則此三棱柱外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x焦點(diǎn)F做直線l,交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若線段AB中點(diǎn)橫坐標(biāo)為3,則|AB|=(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為橢圓
x2
25
+
y2
9
=1的兩焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn),若|F2A|+|F2B|=14,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足條件
4x-y-10≤0
x-2y+8≥0
x≥0,y≥0
若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
2
a
+
3
b
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案