13.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,a1>1,且$6{S_n}={a_n}^2+3{a_n}+2$,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若${b_n}=\frac{{{a_n}-1}}{2^n}$,求數(shù)列的前n項(xiàng)和Tn

分析 (Ⅰ)利用數(shù)列的遞推關(guān)系式,轉(zhuǎn)化為an+1-an=3,說明數(shù)列是等差數(shù)列,然后求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)化簡數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求解數(shù)列的和即可.

解答 解:(Ⅰ)由$6{S_n}={a_n}^2+3{a_n}+2$,n∈N*,得,
所以$6{S_{n+1}}={a^2}_{n+1}+3{a_{n+1}}+2$,
兩式相減得$6{a_{n+1}}={a^2}_{n+1}-{a_n}^2+3{a_{n+1}}-3{a_n}$
所以${a^2}_{n+1}-{a_n}^2-3{a_{n+1}}-3{a_n}=({a_{n+1}}+{a_n})[{{a_{n+1}}-{a_n}-3}]=0$
因?yàn)閍n>0n∈N*,所以an+1+an>0,所以an+1-an=3,
由$6{a_1}={a_1}^2+3{a_1}+2$,所以a1=1或a1=2;
因?yàn)閍1>1,所以a1=2,
故an=2+3(n-1)=3n-1.                                                   …(6分)
(Ⅱ)由(Ⅰ)知${b_n}=\frac{3n-2}{2^n}$
所以${T_n}=\frac{1}{2}+\frac{4}{2^2}+\frac{7}{2^3}+…+\frac{3n-5}{{{2^{n-1}}}}+\frac{3n-2}{2^n}$…①
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{4}{2^3}+\frac{7}{2^4}+…+\frac{3n-5}{2^n}+\frac{3n-2}{{{2^{n+1}}}}$…②
 ①②得:$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{3}{2^2}+\frac{3}{2^3}+…+\frac{3}{2^n}-\frac{3n-2}{{{2^{n+1}}}}=\frac{1}{2}+3•\frac{{\frac{1}{2^2}({1-\frac{1}{{{2^{n-1}}}}})}}{{1-\frac{1}{2}}}-\frac{3n-2}{{{2^{n+1}}}}$=$2-\frac{3n+4}{{{2^{n+1}}}}$
所以${T_n}=4-\frac{3n+4}{2^n}$.                               …(12分)

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{2^x}+1,x<1\\-{x^2}+ax,x≥1\end{array}$,若f(x)的值域?yàn)椋?∞,3),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2)∪(2,+∞)B.$[-2\sqrt{3},-2)∪(2,2\sqrt{3}]$C.$[2,2\sqrt{3})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法正確的是( 。
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
B.命題“?x∈R,x2+x+1>0”的否定為“?x0∈R,x02+x0+1≤0”
C.若p∧q為假命題,則p,q均為假命題
D.“x=1”是“x2-3x+2=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|(x-3)(x-1)>0},B={x|y=lg(2x-3)},則A∩B=( 。
A.$[\frac{3}{2},3)$B.(3,+∞)C.$(1,\frac{3}{2})$D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)=$\left\{\begin{array}{l}{x-2,x≥10}\\{f(x+6),x<10}\end{array}\right.$則f(5)的值(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知互不重合的直線l,m,互不重合的平面α,β,給出下列四個(gè)命題,錯(cuò)誤的命題是( 。
A.若l∥α,l∥β,α∩β=m,則l∥mB.若α⊥β,l⊥α,m⊥β則l⊥m
C.若α⊥β,α⊥γ,β∩γ=l,則l⊥αD.若α∥β,l∥α,則l∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f (x)=lg$\frac{10}{\sqrt{1+4{x}^{2}}-2x}$,則f (2017)+f (-2017)=( 。
A.0B.2C.20D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow a=({1,2}),\overrightarrow b=({m,1})$,若$\overrightarrow a⊥\overrightarrow b$,則m=( 。
A.$-\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題P:若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=($\overrightarrow$•$\overrightarrow{c}$)•$\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$一定共線.命題Q:若$\overrightarrow{a}$•$\overrightarrow$>0,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角.則下列選項(xiàng)中是真命題的是(  )
A.P∧QB.(¬P)∧QC.(¬P)∧(¬Q)D.P∧(¬Q)

查看答案和解析>>

同步練習(xí)冊(cè)答案