6.已知復(fù)數(shù)$z=\frac{2+i}{1-i}$(i為虛數(shù)單位),那么z的共軛復(fù)數(shù)為( 。
A.$\frac{3}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{3}{2}-\frac{3}{2}i$

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)$z=\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}$=$\frac{1+3i}{2}$,那么z的共軛復(fù)數(shù)為$\overline{z}$=$\frac{1}{2}-\frac{3i}{2}$.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在調(diào)查分析某班級數(shù)學(xué)成績與物理成績的相關(guān)關(guān)系時,對數(shù)據(jù)進(jìn)行統(tǒng)計分析得到如下散點圖,用回歸直線$\hat y=bx+a$近似刻畫其關(guān)系,根據(jù)圖形,b的數(shù)值最有可能是( 。
A.0B.1.55C.0.45D.-0.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.有5名高中優(yōu)秀畢業(yè)生回母校成都7中參加高2015級勵志成才活動,到3個班去做學(xué)習(xí)經(jīng)驗交流,則每個班至少去一名的不同分派方法種數(shù)為( 。
A.200B.180C.150D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4$\sqrt{2}$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{m}-\frac{y^2}{n}=1({m>0,n>0})$和橢圓$\frac{x^2}{a}+\frac{y^2}=1({a>b>0})$有相同的焦點F1,F(xiàn)2,M為兩曲線的交點,則|MF1|•|MF2|等于( 。
A.a+mB.b+mC.a-mD.b-m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知(ax+b)6的展開式中x4項的系數(shù)與x5項的系數(shù)分別為135與-18,則(ax+b)6展開式所有項系數(shù)之和為(  )
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在四棱臺ABCD-A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(Ⅰ)若M為CD中點,求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,圖中矩形均為邊長是1的正方形弧線為四分之一圓,則該幾何體的體積是$1-\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若變量x,y滿足不等式組$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,且z=3x-y的最大值為7,則實數(shù)a的值為( 。
A.1B.7C.-1D.-7

查看答案和解析>>

同步練習(xí)冊答案