2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,則實數(shù)a的取值集合為( 。
A.[-$\frac{1}{12}$,0]B.[-$\frac{1}{12}$,-$\frac{4}{49}$)C.(-$\frac{4}{49}$,0]D.[-$\frac{4}{49}$,0]

分析 分離參數(shù),轉(zhuǎn)化為二次函數(shù)求值域問題,即可得出結(jié)論.

解答 解:由ax2+x-3=0,可得a=3($\frac{1}{x}$-$\frac{1}{6}$)2-$\frac{1}{12}$,
∵3≤x<7,∴$\frac{1}{7}$<$\frac{1}{x}$$≤\frac{1}{3}$,∴$\frac{1}{x}$=$\frac{1}{6}$時,a的最小值為-$\frac{1}{12}$,$\frac{1}{x}$=$\frac{1}{3}$時,a的最大值為0,
故選A.

點評 本題考查集合的運算,考查二次函數(shù)的性質(zhì),正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a為實數(shù),函數(shù)f(x)=x3-x2-x+a
(1)求f(x)的極值
(2)曲線y=f(x)與x軸僅有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)若直線l:y=x+k與曲線C相切,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2ax3-(3a+1)x2+2x+5;
(1)a為何值時,函數(shù)f(x)沒有極值點;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不重合的三個平面把空間分成n部分,則n的可能值為4,6,7或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.${(x-\frac{2}{x})^5}$的展開式中含x3的系數(shù)為-10.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l:ax+2by+3c=0和兩定點A(0,13),B(5,10),若點B在l上的射影為C,且a,2b,3c成等差數(shù)列,則|AC|的取值范圍為[$\sqrt{10}$,5$\sqrt{10}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在多項式(3$\sqrt{x}$-$\frac{2}{\root{3}{x}}$)4($\sqrt{x}$+2x)5的展開式中,含x2項的系數(shù)為( 。
A.-32B.32C.-96D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=-x2+14x+15,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項和Sn最大時,n=( 。
A.14B.15C.14或15D.15或16

查看答案和解析>>

同步練習(xí)冊答案