分析 (1)證明EF∥平面ABC,EG∥平面ABC,即可證明平面EFG∥平面ABC;
(2)證明AF⊥平面SBC,可得AF⊥BC.又因為AB⊥BC,即可證明BC⊥平面SAB.
解答 證明:(1)因為F是SB的中點.又因為E是SA的中點,所以EF∥AB.
因為EF?平面ABC,AB?平面ABC,所以EF∥平面ABC.
同理EG∥平面ABC.又EF∩EG=E,
所以平面EFG∥平面ABC.…(6分)
(2)因為F是SB的中點,AS=AB,所以AF⊥SB…(8分)
因為平面SAB⊥平面SBC,且交線為SB,又AF?平面SAB,
所以AF⊥平面SBC.
又因為BC?平面SBC,所以AF⊥BC.
又因為AB⊥BC,AF∩AB=A,AF,AB?平面SAB,
所以BC⊥平面SAB.…(13分)
點評 本題考查線面、面面平行的判定,考查線面垂直的判定,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x-3y+4=0 | B. | 3x-2y+1=0 | C. | 2x+3y-8=0 | D. | 3x+2y-7=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [4,16] | B. | [2,10] | C. | [$\frac{1}{2}$,2] | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com