17.已知數(shù)列{an}滿足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n為偶數(shù)}\\{{a}_{n}+1,n為奇數(shù)}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn,求S2n

分析 (Ⅰ)利用遞推關(guān)系、等比數(shù)列的定義即可得出.
(Ⅱ)利用分組求和、等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)證明:${b_{n+1}}={a_{2n+1}}-1=\frac{1}{2}{a_{2n}}-1$=$\frac{1}{2}({a_{2n-1}}+1)-1$=$\frac{1}{2}({a_{2n-1}}-1)=\frac{1}{2}{b_n}$,
故{bn} 為等比數(shù)列;
(Ⅱ)由(Ⅰ)知${b_n}=({a_1}-1)•{(\frac{1}{2})^{n-1}}=\frac{1}{{{2^{n-1}}}}$,∴${a_{2n-1}}=\frac{1}{{{2^{n-1}}}}+1$,
又a2n=a2n-1+1,∴${a_{2n-1}}+{a_{2n}}=\frac{1}{{{2^{n-2}}}}+3$,
∴${S_{2n}}=3n+\frac{{2(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}=3n+4-\frac{1}{{{2^{n-2}}}}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的定義與求和公式、分組求和,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$,在F(x)=f(x)+1和G(x)=f(x)-1中,G(x)為奇函數(shù),若f(b)=$\frac{3}{2}$,則f(-b)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l過點(diǎn)P(2,4),且與圓O:x2+y2=4相切,則直線l的方程為( 。
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題p:甲的數(shù)學(xué)成績不低于100分,命題q:乙的數(shù)字成績低于100分,則p∨(¬q)表示(  )
A.甲、乙兩人數(shù)學(xué)成績都低于100分
B.甲、乙兩人至少有一人數(shù)學(xué)成績低于100分
C.甲、乙兩人數(shù)學(xué)成績都不低于100分
D.甲、乙兩人至少有一人數(shù)學(xué)成績不低于100分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a,b,c∈R且c≠0.
 x 1.5 314 27 
 lgx 2a+b a+b a-c+1 b+c a+2b+c 3(c-a) 2(a+b) b-a 3(a+b)
若上表中的對(duì)數(shù)值恰有兩個(gè)是錯(cuò)誤的,則a的值為(  )
A.lg$\frac{2}{21}$B.$\frac{1}{2}$lg$\frac{3}{14}$C.$\frac{1}{2}$lg$\frac{3}{7}$D.lg$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F(xiàn)分別為AB,BC的中點(diǎn),則$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=alnx+$\frac{x}$+1,曲線y=f(x)在點(diǎn)(1,2)處切線平行于x軸.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時(shí),不等式(x-1)f(x)>(x-k)lnx恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,F(xiàn)1、F2是雙曲線$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦點(diǎn),過F1的直線l與雙曲線分別交于點(diǎn)A、B,若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,點(diǎn)E、F、G分別是棱SA、SB、SC的中點(diǎn).求證:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

同步練習(xí)冊(cè)答案