5.如圖,在透明塑料制成的長方體ABCD-A1B1C1D1容器內(nèi)灌進(jìn)一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個(gè)說法:
①有水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時(shí),AE+BF是定值.
其中正確說法是①③④.

分析 ①由于BC固定,所以在傾斜的過程中,始終有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC,由此分析可得結(jié)論正確;
②水面四邊形EFGH的面積是改變的;
③利用直線平行直線,直線平行平面的判斷定理,容易推出結(jié)論;
④當(dāng)E∈AA1時(shí),AE+BF是定值.通過水的體積判斷即可.

解答 解:根據(jù)面面平行性質(zhì)定理,可得BC固定時(shí),
在傾斜的過程中,始終有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC,
故水的形狀成棱柱形,故①正確;
水面四邊形EFGH的面積是改變的,故②錯(cuò)誤;
因?yàn)锳1D1∥AD∥CB∥EH,A1D1?水面EFGH,EH?水面EFGH,
所以A1D1∥水面EFGH正確,故③正確;
由于水的體積是定值,高不變,所以底面ABFE面積不變,
即當(dāng)E∈AA1時(shí),AE+BF是定值.故④正確.
故答案為:①③④.

點(diǎn)評 本題是中檔題,考查棱柱的結(jié)構(gòu)特征,直線與平面平行的判斷,棱柱的體積等知識,考查計(jì)算能力,邏輯推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

經(jīng)過點(diǎn)(,2),傾斜角為60°的直線方程是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知直線、, 平面α, , ∥α, 那么與平面α的關(guān)系是( ).

A.∥α

B.α

C.∥α或α

D.與α相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x 滿足${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}=2\sqrt{3}$,則x+x-1=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$.(φ為參數(shù))
(1)寫出直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a(x-1)}{{x}^{2}}$,a≠0
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若全集U=R.A={x|1≤x≤5}.B={x|5≤x≤10}.則∁U(A∩B)=( 。
A.{x|x≠5}B.{x|x=5}C.{x|x<5}D.{x|x>5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=sin2(x+$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)(x∈R),則函數(shù)f(x)是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2},x<1\\{2^x},x≥1\end{array}\right.$,則$f[f(\frac{1}{2})]$=2.

查看答案和解析>>

同步練習(xí)冊答案