分析 (1)推導出DE⊥AC,PA⊥DE,由此能證明DE⊥面PAC
(2)取PD中點Q,三棱錐P-QBE體積${V}_{P-QBE}=\frac{1}{2}{V}_{P-DBE}$,由此能求出結果.
解答 證明:(1)∵在四棱錐P-ABCD,PA⊥面ABCD,AD∥BC,
AB⊥AD,BC=2AB=2AD=2PA=4BE=4,
∴在梯形ABCD中,tan∠ADE=2=tan∠BAC,
∴∠ADE=90°-∠DAC,
∴DE⊥AC,
又∵PA⊥面ABCD,∴PA⊥DE,
∵PA∩AC=A,∴DE⊥面PAC
解:(2)取PD中點Q,
∴三棱錐P-QBE體積:
${V}_{P-QBE}=\frac{1}{2}{V}_{P-DBE}$=$\frac{1}{2}×\frac{1}{3}×{S}_{△DBE}×PA$=$\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×1×2×2=\frac{1}{3}$.
點評 本題考查線面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com