12.記min{p,q}=$\left\{\begin{array}{l}{p(p≤q)}\\{q(p>q)}\end{array}\right.$,若函數(shù)f(x)=min{3+log${\;}_{\frac{1}{4}}$x,log2x}
(1)用分段函數(shù)形式寫出函數(shù)f(x)的解析式;
(2)求不等式組0<f(x)<2的解集.

分析 (1)先根據(jù)“min{p,q}表示p,q兩者中的較小的一個”求得函數(shù)f(x),
(2)分類討論,即可求出不等式0<f(x)<2的解集.

解答 解:(1)根據(jù)min{p,q}表示p,q兩者中的較小者,
由3+log${\;}_{\frac{1}{4}}$x≤log2x,
解得x≥2,
故f(x)=$\left\{\begin{array}{l}{3+lo{g}_{\frac{1}{4}}x,x≥2}\\{lo{g}_{2}x,0<x<2}\end{array}\right.$,
(2)當x≥2時,0<3+log${\;}_{\frac{1}{4}}$x<2,解得4<x<64,
當0<x<2,解得0<log2x<2,解得1<x<2,
故不等式的解集為(1,2)∪(4,64).

點評 本題考查了其他不等式的解法,是一道新定義題,首先要根據(jù)新定義求得函數(shù)圖象,再應(yīng)用函數(shù)圖象解決相關(guān)問題,這類問題的解決,正確轉(zhuǎn)化是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓C:(x-3)2+(y-4)2=4
(1)若平面上有兩點A(1,0),B(-1,0),點P是圓C上的動點,求使|AP|2+|BP|2取得最小值時點P的坐標;
(2)若Q是x軸上的動點,QM,QN分別切圓C于M,N兩點,①若$|{MN}|=2\sqrt{3}$,求直線QC的方程;②求證:直線MN恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3+ax2+bx+c的圖象如圖所示,且與y=0在原點相切,若函數(shù)的極小值為-4.
(1)求a,b,c的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.?x∈R,x2-x+$\frac{1}{4}$≥0的否定是?x0∈R,x${\;}_{0}^{2}$-x0+$\frac{1}{4}$<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若cos(α+45°)=$\frac{1}{3}$,α是第三象限角,則sin(α+45°)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.點(x,y)在映射f下的對應(yīng)元素為(x+y,x-y),則點(2,0)在f作用下的對應(yīng)元素為( 。
A.(0,2)B.(2,0)C.(2,2)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.集合A={x|-5<x<1},B={x|-2<x<8},C={x|x<a},全集為實數(shù)集R
(1)求A∪B,(∁RA)∩B;
(2)若A∩B⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD,PA⊥面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=2PA=4BE=4
(1)求證:DE⊥面PAC
(2)取PD中點Q,求三棱錐P-QBE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖的莖葉圖記錄了甲、乙兩組各5名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x、y的值分別為( 。
A.2,5B.5,5C.5,8D.8,8

查看答案和解析>>

同步練習冊答案