已知定義在R上的函數(shù)f(x)滿(mǎn)足f(-x)=f(x),且f(x)有三個(gè)零點(diǎn)x1,x2,x3,則x1+x2+x3=
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:∵f(-x)=f(x),
∴函數(shù)f(x)是偶數(shù),
∵偶函數(shù)如果存在正根,則必有一個(gè)負(fù)數(shù)根,且互為相反數(shù),
∴若f(x)有三個(gè)零點(diǎn)x1,x2,x3
則其中必要一個(gè)為0,另外兩個(gè)互為相反數(shù),
即x1+x2+x3=0.
故答案為:0
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的性質(zhì),根據(jù)偶函數(shù)的對(duì)稱(chēng)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB=3,BC=2,
AD
AB
=
1
3
|
AB
|2
(Ⅰ)求∠BAD的大。
(Ⅱ)若E為BC邊上的中點(diǎn),F(xiàn)為平行四邊形內(nèi)(包括邊界)的一動(dòng)點(diǎn),求
AE
AF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα=3,則(sinα+cosα)2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班共30人,其中有15人喜愛(ài)籃球運(yùn)動(dòng),有10人喜愛(ài)兵乓球運(yùn)動(dòng),有3人對(duì)籃球和兵乓球兩種運(yùn)動(dòng)都喜愛(ài),則該班對(duì)籃球和乒乓球運(yùn)動(dòng)都不喜愛(ài)的人數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AB
=(cos18°,cos72°)
,
BC
=(2cos63°,2cos27°)
,則∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是BC上的一個(gè)動(dòng)點(diǎn),當(dāng)
PD
PA
取得最小值時(shí),
CP
PD
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=4,∠ABC=30°,D是邊BC上的一點(diǎn),且
AD
AB
=
AD
AC
,則
AD
AB
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),x∈D,如果存在非零常數(shù)T,使對(duì)任意的x∈D都有f(x+t)=f(x)成立,就稱(chēng)T為該函數(shù)的周期.請(qǐng)根據(jù)以上定義解答下列問(wèn)題:若y=f(x)是R上的奇函數(shù),且滿(mǎn)足f(x+5)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l的向上方向與y軸的正方向成30°角,則直線l的傾斜角為( 。
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案