6.若tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,則cos2α的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

分析 由題意求得tanα的值,再利用同角三角函數(shù)的基本關系,二倍角公式,求得cos2α的值.

解答 解:∵tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,∴tanα=2,
則cos2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{1-4}{4+1}$=-$\frac{3}{5}$,
故選:D.

點評 本題主要考查同角三角函數(shù)的基本關系,二倍角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.設min{p,q}表示p,q兩者中的較小者,若函數(shù)f(x)=min{3-x,log2x},則f(x)的最大值為2,滿足$f(x)<\frac{1}{2}$的集合為{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)(x∈R)是奇函數(shù),且當x>0時,f(x)=2x-1.
(1)求函數(shù)f(x)的解析式;     
(2)求f(f(-2))的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=x+1,g(x)=-2x,$F(x)=\left\{\begin{array}{l}f(x),f(x)<g(x)\\ g(x),f(x)≥g(x)\end{array}\right.$,則F(x)的最值是( 。
A.有最大值為$\frac{2}{3}$,無最小值B.有最大值為$-\frac{1}{3}$,無最小值
C.有最小值為$-\frac{1}{3}$,無最大值D.有最小值為$\frac{2}{3}$,無最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{2^x}{a}+\frac{a}{2^x}-1\;\;\;({a>0})$是R上的偶函數(shù).
(1)求a的值;
(2)解不等式$f(x)<\frac{13}{4}$;
(3)若關于x的不等式mf(x)≥2-x-m在(0,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|x-x2≥0},B={x|y=lg(2x-1)},則A∩B=(  )
A.$[{0,\frac{1}{2}})$B.[0,1]C.$({\frac{1}{2},1}]$D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線為正方形OABC的邊OA,OC所在直線,點B為該雙曲線的焦點,若正方形OABC的邊長為2,則a=( 。
A.1B.2C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列是函數(shù)y=-(x-3)|x|的遞增區(qū)間是(  )
A.(-∞,3)B.(0,3)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.拋物線x=2y2的準線方程是( 。
A.y=-$\frac{1}{2}$B.x=-$\frac{1}{8}$C.y=$\frac{1}{2}$D.x=$\frac{1}{8}$

查看答案和解析>>

同步練習冊答案