分析 (Ⅰ)由已知及正弦定理,得$\sqrt{3}sinBsinA=sinAcosB$,結(jié)合sinA≠0,可求$tanB=\frac{{\sqrt{3}}}{3}$,由于0<B<π,可求B的值.
(Ⅱ)由已知及正弦定理,得$c=\sqrt{3}a$,利用余弦定理可求${a^2}+{c^2}-\sqrt{3}ac=9$,聯(lián)立即可解得a,c的值.
解答 解:(Ⅰ)由$\sqrt{3}bsinA=acosB$及正弦定理,得$\sqrt{3}sinBsinA=sinAcosB$.
在△ABC中,sinA≠0,∴$\sqrt{3}sinB=cosB$,∴$tanB=\frac{{\sqrt{3}}}{3}$.
∵0<B<π,
∴$B=\frac{π}{6}$.
(Ⅱ)由$sinC=\sqrt{3}sinA$及正弦定理,得$c=\sqrt{3}a$,①
由余弦定理b2=a2+c2-2accosB得,${3^2}={a^2}+{c^2}-2accos\frac{π}{6}$,
即${a^2}+{c^2}-\sqrt{3}ac=9$,②
由①②,解得$a=3,c=3\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | $\frac{4}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 5 | C. | $\sqrt{26}$ | D. | $\sqrt{29}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{1}{9}$ | C. | $\frac{4}{27}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2loga8 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{12}$ | B. | $\frac{1}{30}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{60}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com