【題目】圓x2+y2﹣2x+4y+3=0的圓心到直線x﹣y=1的距離為:( )
A.2
B.
C.1
D.

【答案】D
【解析】解:圓x2+y2﹣2x+4y+3=0的圓心(1,﹣2),
它到直線x﹣y=1的距離:
故選D.
【考點精析】解答此題的關(guān)鍵在于理解點到直線的距離公式的相關(guān)知識,掌握點到直線的距離為:,以及對圓的一般方程的理解,了解圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

寫出曲線的極坐標的方程以及曲線的直角坐標方程;

若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2010年世博會期間進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足3﹣x與t+1成反比例,如果不搞促銷活動,化妝品的年銷量只能是1萬件,已知2010年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費用為3萬元,每生產(chǎn)1萬件化妝品需要再投入32萬元的生產(chǎn)費用,若將每件化妝品的售價定為:其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則當年生產(chǎn)的化妝品正好能銷完.
(1)將2010年利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2010年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入﹣生產(chǎn)成本﹣促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和是Sn , 且Sn+ an=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log4(1﹣Sn+1)(n∈N*),Tn= + +…+ ,求使Tn 成立的最小的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在正實數(shù)集上的函數(shù),其中,設(shè)兩曲線有公共點,且在公共點處的切線相同.

(1)若,求實數(shù)的值;

(2)用表示,并求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高中生共有2700人,其中高一年級900人,高二年級1200人,高三年級600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級抽取的人數(shù)分別為(
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中, =(4,﹣2,3), =(﹣4,1,0), (﹣6,2,﹣8),則該四棱錐的高為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2﹣a2= bc,且b= a,則下列關(guān)系一定不成立的是(
A.a=c
B.b=c
C.2a=c
D.a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

同步練習冊答案