6.已知二元一次方程組的增廣矩陣為$(\begin{array}{l}{m}&{4}&{m+2}\\{1}&{m}&{m}\end{array})$,若此方程組無實(shí)數(shù)解,則實(shí)數(shù)m的值為( 。
A.m=±2B.m=2C.m=-2D.m≠±2

分析 由題意,$\frac{m}{1}=\frac{4}{m}=\frac{m+2}{m}$,即可求出實(shí)數(shù)m的值.

解答 解:由題意,$\frac{m}{1}=\frac{4}{m}=\frac{m+2}{m}$,∴m=-2.
故選C.

點(diǎn)評 本題考查二元一次方程組的增廣矩陣,考查方程思想,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是一名籃球運(yùn)動員在最近6場比賽中所得分?jǐn)?shù)的莖葉圖,則下列關(guān)于該運(yùn)動員所得分?jǐn)?shù)的說法錯誤的是( 。
A.中位數(shù)為14B.眾數(shù)為13C.平均數(shù)為15D.方差為19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$,則z=|x|+|y|的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列關(guān)系中,正確的是( 。
A.$\sqrt{2}$∈NB.$\frac{1}{2}$∈ZC.∅?{0,1}D.$\frac{1}{2}$∉Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ex-$\frac{1}{{e}^{x}}$+x(e為自然對數(shù)的底數(shù)),若實(shí)數(shù)a滿足f(log2a)-f(log0.5a)≤2f(1),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)∪(2,+∞)B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$,則z=2x+y的最大值是(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$f(x)=\left\{\begin{array}{l}2a-(x+\frac{4}{x}),x<a\\ x-\frac{4}{x},x≥a\end{array}\right.$.
①當(dāng)a=1時(shí),f(x)=3,則x=4;
②當(dāng)a≤-1時(shí),若f(x)=3有三個不等實(shí)數(shù)根,且它們成等差數(shù)列,則a=$-\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點(diǎn)P為棱長是$2\sqrt{5}$的正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動點(diǎn),點(diǎn)M為B1C1的中點(diǎn),若滿足DP⊥BM,則動點(diǎn)P的軌跡的長度為( 。
A.πB.C.D.$2\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=(x2+x-1)ex,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為( 。
A.y=3ex-2eB.y=3ex-4eC.y=4ex-5eD.y=4ex-3e

查看答案和解析>>

同步練習(xí)冊答案