A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 根據(jù)條件即可得出△ABC為等腰三角形,其中AB=AC,∠ACB=30°,這樣便可求出向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影.
解答 解:根據(jù)條件$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AO}$,O為△ABC的外心;
∴AO⊥BC,且AO平分BC,如圖所示,則:
AB=AC;
$|\overrightarrow{OA}|=|\overrightarrow{AB}|=|\overrightarrow{OB}|=1$;
∴△ABO為等邊三角形,∠BAO=60°;
∴AB=AC=1,∠BAC=120°;
∴∠ACB=30°;
∴$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為$|\overrightarrow{CA}|cos30°=\frac{\sqrt{3}}{2}$.
故選C.
點評 考查三角形外心的概念,向量加法的平行四邊形法則,向量的數(shù)乘運算,相反向量的概念,以及向量投影的定義.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A⊆B | B. | B⊆A | C. | B?A | D. | A?B |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 6 | C. | 9$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com